
Tools for Scientific Computing
Release 0.3

Gert-Ludwig Ingold

July 25, 2022

Contents

1 Introduction 1

2 Version Control with Git 3
2.1 Why version control? . 3
2.2 Centralized and distributed version control systems . 4
2.3 Getting help . 5
2.4 Setting up a local repository . 7
2.5 Basic workflow . 8
2.6 Working with branches . 12
2.7 Collaborative code development with GitLab . 19
2.8 Sundry topics . 29

2.8.1 Stashing . 29
2.8.2 Tagging . 30
2.8.3 Detached head state . 31
2.8.4 Manipulating history . 33

3 Testing of code 37
3.1 Why testing? . 37
3.2 Doctests . 38
3.3 Testing with pytest . 42

4 Scientific computing with NumPy and SciPy 51
4.1 Python scientific ecosystem . 51
4.2 NumPy . 52

4.2.1 Python lists and matrices . 52
4.2.2 NumPy arrays . 53
4.2.3 Creating arrays . 58
4.2.4 Indexing arrays . 62
4.2.5 Broadcasting . 69
4.2.6 Universal functions . 70
4.2.7 Linear algebra . 75

4.3 SciPy . 77

5 Run-time analysis 83
5.1 General remarks . 83
5.2 Some pitfalls in run-time analysis . 84
5.3 The timeit module . 86
5.4 The cProfile module . 88
5.5 Line oriented run-time analysis . 95

6 Documentation of code 97

i

6.1 Markup with reStructuredText . 97
6.2 Sphinx documentation generator . 103

6.2.1 Setting up a Sphinx project . 103
6.2.2 Sphinx configuration . 104
6.2.3 Autogeneration of a documentation . 105

7 Aspects of parallel computing 111
7.1 Threads, processes and the GIL . 111
7.2 Parallel computing in Python . 112
7.3 Numba . 117

8 Appendix 123
8.1 Decorators . 123

Index 127

ii

CHAPTER 1

Introduction

The daily routine in scientific work is characterized by careful checks and detailed documentation. Ex-
perimentalists calibrate their apparatuses and note all relevant aspects of an experiment in a lab book,
either on paper or digitally. Theorists check their calculations and consider limiting cases to ensure the
correctness of their results. On the other hand, it can frequently be observed that not the same stan-
dards are applied to scientific computational work, even though appropriate tools exist. Furthermore,
knowledge of these tools can be an important asset when looking for a job outside of academia.

The present lecture notes cover a number of tools useful in scientific computing. In view of the aspects
just discussed, we specifically mention the use of a version control system like Git introduced in Chapter
2, testing of code discussed in Chapter 3, and the documentation of code covered in Chapter 6. The
discussion of the version control system Git is completely independent of the specific programming
language used. On the other hand, the tools covered in the chapter on testing – doctests and the
pytest package – are specific to the programming language Python. However, the basic ideas should
be transferable to other programming languages. For the purpose of documentation, we introduce the
Sphinx documentation generator. Despite its origin as a tool to generate the Python documentation, it
is very flexible and can be used also for other programming languages. In fact, even the present lecture
notes where produced with Sphinx.

The other chapters are concerned more with the performance of programs. This is an important issue
when using Python as a programming language. Python has gained a significant popularity in scientific
computing despite its reputation of not being the fastest language. However, there exist a variety of
approaches to bring Python up to speed. One possibility is the use of scientific numerical libraries like
NumPy and SciPy which are discussed in Chapter 4. This chapter is rather specific to Python apart
from the aspect of illustrating the use of numerical libraries.

Chapter 5 is devoted to the run-time analysis of code with the aim of identifying the most time-consuming
parts of a program. Here again, the tools are specific to Python but the concepts can be applied to
other languages as well. Finally, Chapter 7 gives a brief introduction to aspects of parallel computing in
Python. In view of the existence of the global interpreter lock, this discussion is rather specific to Python.
In addition, possibilities offered by just-in-time compilers to increase the performance of programs are
highlighted.

These lecture notes present material covered in a one-semester method course Tools for scientific com-
puting taught at the Universität Augsburg consisting of a two-hour lecture and four-hour practical work
per week. The material is thus intended for a total of 30 hours of lectures.

The sources of the lecture notes are publicly available on Github at https://github.com/gertingold/
tools4scicomp. Suggestions for improvements through Github issues or pull request are welcome.

1

https://github.com/gertingold/tools4scicomp
https://github.com/gertingold/tools4scicomp

Tools for Scientific Computing, Release 0.3

2 Chapter 1. Introduction

CHAPTER 2

Version Control with Git

2.1 Why version control?

A program is rarely written in one go but rather evolves through a number of stages where the code
is improved, for example by fixing errors or improving its functionality. In this process, it is generally
a good idea to keep old versions. Occasionally, one has an apparently good idea of how to improve a
program, only to find out somewhat later that it was not such a good idea after all. Without having the
original version available, one might have a hard time going back to it.

Often, old versions are kept in an informal way by inventing filenames to distinguish different versions.
Unless one strictly abides by a naming convention, sooner or later one will be unable to identify the
stage of development corresponding to a given file. Things become even more difficult if more than one
developer is involved.

The potential loss of a working program is not the only motivation to keep a history of program versions.
Suppose that a version of the program is used to compute scientific data and suppose that the program
is further developed, e.g. by adding functionality. One might think that it is unnecessary to keep the old
version. However, imagine that at some point it turns out that the program contains a mistake resulting
in erroneous data. In such a situation, it may become essential to know whether the data obtained
previously are affected by the mistake or not. Do the data have to be discarded or can continue to use
them? If the version of the code used obtain the data is documented, this question can be decided.
Otherwise, one probably could not trust the old data anymore.

Another reason of keeping the history of a program is to document its evolution. The motivation for
design decisions can be made transparent and even bad decisions could be kept for further reference. In
a scenario where code is developed by several or even a large number of people, it might be desirable to
know who is to be praised or blamed for a certain piece of code. Version control systems often support
collaborative development by providing tools to discuss code before accepting the associated changes
and by the possibility of easily going back to an older version. In this way, trying out new ideas can be
encouraged.

A version control system storing the history of a software project is clearly an invaluable tool. This
insight is anything but new and indeed as early as in the 1970s, a first version control system, SCCS
(short for source code control system), was developed. Later systems in wide use include RCS (revision
control system) and CVS (concurrent versions system), both developed in the last century, Subversion
developed around the turn of the century and more recent systems like Git, Mercurial and Bazaar.

Here, we will discuss the version control system Git created by Linus Torvalds in 2005. Its original
purpose was to serve in the development of the Linux kernel. In order to make certain aspects of Git

3

Tools for Scientific Computing, Release 0.3

central server

clients

file 1

file 2

file 3

r1 r2 r3 r4 r5

Figure 2.1: A centralized version control system contains a well defined set of files at any given moment
in time which can be referred to by a sequential revision number.

better understandable and to highlight some of its advantages, we will consider in the following section
in some more detail different approaches to version control.

2.2 Centralized and distributed version control systems

Often software is developed by a team. For the sake of illustration let us think of a number of authors
working jointly on a text. In fact, scientific manuscripts are often written in (La)TeX which can be viewed
as a specialized programming language. Obviously, there exists a probability that persons working in
parallel on the text will make incompatible changes. Inevitably, at some point the question arises which
version should actually be accepted. We will encounter such situations later as so-called merge conflicts.

Early version control systems like RCS avoided such conflicts by a locking technique. In order to change
the text or code, it was necessary to first lock the corresponding file, thus preventing other persons
from modifying the same file at the same time. Unfortunately, this technique tends to impede parallel
development. For our example of manuscript, it is perfectly fine if several persons work in parallel on
different sections. Therefore, locking has been found not to be a good idea and it is not substitute for
communication between team members about who is doing what.

More modern version control systems are designed to favor collaboration within a team. There exist
two different approaches: centralized version control systems on the one hand and distributed version
control systems on the other hand. The version control system Git, which we are going to discuss in
more detail in this chapter, is a distributed version control system. In order to better understand some
of its aspects, it is useful to contrast it with a centralized version control system like Subversion.

More modern version control systems are designed to favor collaboration within a team. There exist two
different approaches: centralized version control systems on the one hand and distributed version control
systems on the other hand. The version control system Git which we are going to discuss in more detail
in this chapter is a distributed version control system. In order to better understand some of its aspects,
it is useful to contrast it with a centralized version control system like Subversion.

The basic structure of a centralized version control system is depicted in the left part of Figure 2.1. One
or more developers, referred to as clients here, exchange code versions via the internet with a central
server. At any moment of time, the server contains a definite set of files, i.e. a revision which is numbered
sequentially as indicated in the right part of Figure 2.1. From one revision to the next, files can change
or remain unchanged and files can be added or removed. The price to pay for this simple sequential
history is that an internet connection and a working server is needed in order to create a new revision.
A developer cannot create new revisions of the code while working off-line, an important drawback of
centralized version control systems.

As an alternative, one can use a distributed version control system which is schematically represented
in Figure 2.2. In such a setup, each developer keeps his or her own versions in a local repository and
exchanges files with other repositories when needed. Due to the local repository, one can create a new
version at any time, even in the absence of an internet connection. On the other hand, there exist local
version histories and the concept of a global sequential revision numbering scheme does not make sense

4 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

file 1 e892e7a c0c3e13 d43c0cd

file 2 f1567ad 435d4c4 7a26bf4 a3f1123

file 3 61d315 571dc16

7a89bf3 9e2ace6 1fa6e8e d53c0f1 6cc7e70

Figure 2.2: In a distributed version control system each user keeps file versions in a local repository and
exchanges versions with other repositories when needed. As a consequence no global sequential history
can be defined.

Gitlab / Github server

Figure 2.3: A typical setup for the distributed version control system Git uses a central server to exchange
versions between local repositories.

anymore. Instead, Git uses hexadecimal hash values to identify versions of individual files and sets of
files, so-called commits, which reflect changes in the code base. The main point to understand here is
that the seemingly natural sequential numbering scheme cannot work in a distributed version control
system.

In most cases, a distributed version control system is not implemented precisely in the way presented in
Figure 2.2 as it would require communication between potentially a large number of local repositories.
A setup like the one shown in Figure 2.3 is typical instead. The important difference as compared to the
centralized version control system displayed in Figure 2.1 consists in the existence of local repositories
where individual developers can manage their code versions even if disconnected with the central server.
The difference is most obvious in the case of a single developer. Then, a local repository is completely
sufficient and there is no need to use another server.

A central server for the use with the version control system Git can be set up based on GitLab. Many
institutions are running a GitLab instance1. In addition, there exists the GitHub service at github.com.
GitHub is popular among developers of open software projects for which it provides repositories free
of charge. Private repositories can be obtained at a monthly rate, but there exists also the possibility
to apply for temporary free private repositories for academic use. In later sections, when discussing
collaborative code development with Git, we will specifically address GitLab, but the differences to
GitHub are usually minor.

In the following sections, we will start by explaining the use of Git in a single-user scenario with a local
repository. This knowledge also forms the basis for work in a multi-developer environment using GitLab
or GitHub.

2.3 Getting help

Before starting to explore the version control system Git, it is useful to know where one can get help.
Generally, Git tries to be quite helpful even on the command line by adding useful hints to its output.
As the general structure of a Git command starts with git <command>, one can ask for help as follows:

1 The computing center of the University of Augsburg is running a GitLab server at git.rz.uni-augsburg.de which is
accessible to anybody in possession of a valid user-ID of the computing center.

2.3. Getting help 5

https://github.com/

Tools for Scientific Computing, Release 0.3

$ git help
usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index
sparse-checkout Initialize and modify the sparse-checkout

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects
status Show the working tree status

grow, mark and tweak your common history
branch List, create, or delete branches
commit Record changes to the repository
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
reset Reset current HEAD to the specified state
switch Switch branches
tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)
fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local␣

→˓branch
push Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

Information on a specific command is obtained by means of git help <command>.

Furthermore, Git provides a number of guides which can be read in a terminal window. A list of available
guides can easily be obtained:

$ git help -g

The common Git guides are:
attributes Defining attributes per path

(continues on next page)

6 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

(continued from previous page)

cli Git command-line interface and conventions
core-tutorial A Git core tutorial for developers
cvs-migration Git for CVS users
diffcore Tweaking diff output
everyday A useful minimum set of commands for Everyday Git
glossary A Git Glossary
hooks Hooks used by Git
ignore Specifies intentionally untracked files to ignore
modules Defining submodule properties
namespaces Git namespaces
repository-layout Git Repository Layout
revisions Specifying revisions and ranges for Git
submodules Mounting one repository inside another
tutorial A tutorial introduction to Git
tutorial-2 A tutorial introduction to Git: part two
workflows An overview of recommended workflows with Git

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

For a detailed discussion of Git, the book Pro Git by Scott Chacon and Ben Straub is highly rec-
ommended. Its second edition is available in printed form online where also a PDF version can be
downloaded freely. By the way, the book Pro Git as well as the present lecture notes have been written
under version control with Git.

2.4 Setting up a local repository

The use of a version control system is not limited to large software projects but makes sense even for
small individual projects. A prerequisite is the installation of the Git software which is freely available
for Windows, MacOS and Unix systems from git-scm.com. This Git installation can be used for all
projects to be put under version control and we assume in the following that Git is already installed on
the computer. Even though some graphical user interfaces exist, we will mostly discuss the use of Git
on the command line.

Putting a new project under version control with Git is easy. Once a directory exists in which the code
will be developed, one initializes the repository by means of:

$ git init

Note that the dollar sign represents the command line prompt and should not be typed. Depending on
your operating system setup, the dollar could be replaced by some other character(s). Initializing a new
repository in this way will create a hidden subdirectory called .git in the directory where you executed
the command. The directory is hidden to avoid that it is accidentally deleted.

Attention: Never delete the directory .git unless you really want to. You will lose the complete
history of your project if you did not backup the project directory or synchronized your work with a
GitLab server or GitHub. Removing the project directory will remove the subdirectory .git as well.

The newly created directory contains a number of files and subdirectories:

$ ls -a .git
. .. branches config description HEAD hooks info objects refs

2.4. Setting up a local repository 7

https://git-scm.com/book/en/v2
https://git-scm.com/

Tools for Scientific Computing, Release 0.3

working directory

modified

staging area

staged

repository (.git)

committed

git add git commit

Figure 2.4: The transfer of a file to the repository is a two-step process. First one or more files are added
to the staging area. In a second step, the files are committed to the repository.

Refrain from modifying anything here as you might mess up files and in this way lose parts or all of your
work.

After having initialized your project, you should let Git know about your name and your email address
by using the following commands:

$ git config --global user.name <your name>
$ git config --global user.email <your email>

where the part in angle brackets has to be replaced by the corresponding information. Enclose the
information, in particular your name, in double quotes if it contains one or more blanks like in the
following example:

$ git config --global user.name "Gert-Ludwig Ingold"

This information will be used by Git when new or modified files are committed to the repository in order
to document who has made the contribution.

If you have globally defined your name and email address as we did here, you do not need to repeat this
step for each new repository. However, you can overwrite the global configuration locally. This might be
useful if you intend to use a different email address for a specific project.

There are more aspects of Git which can be configured and which are documented in Section 8.1 of the
Git documentation. The presently active configuration can be inspected by means of:

$ git config --list

For example, you might consider setting core.editor to your preferred editor.

2.5 Basic workflow

A basic step in managing a project under version control is the transfer of one or more new or modified
files to the repository where all versions together with metainformation about them is kept. What looks
like a one-step process is actually done in Git in two steps. For beginners, this two-step process often
gives rise to confusion. We therefore go through the process by means of an example and make reference
to Figure 2.4 where the two-step process is illustrated. A convenient way to check the status of the
project files is the command git status. When working with Git, you will use this command often to
make sure that everything works as expected or to remind yourself of the status of the project files.

Suppose that we have just initialized our Git repository as explained in the previous section. Then, Git
would report the following status:

$ git status
On branch master

No commits yet
(continues on next page)

8 Chapter 2. Version Control with Git

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

Tools for Scientific Computing, Release 0.3

(continued from previous page)

nothing to commit (create/copy files and use "git add" to track)

The output first tells us that we are on a branch called master2. Later, we will discuss the concept of
branches and it will be useful to know this possibility of finding out the current branch. For the moment,
we can ignore this line. Furthermore, Git informs us that we not committed anything yet so that the
upcoming commit would be the initial one. However, since we have not created any files, there is nothing
to commit. As promised earlier, Git tries to be helpful and adds some information about what we could
do. Obviously, we first have to create a file in the project directory.

So let us go ahead and create a very simple Python file:

print("Hello world!")

Now, the status reflects the fact that a new file hello.py exists:

$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

hello.py

nothing added to commit but untracked files present (use "git add" to track)

Git has detected the presence of a new file but it is an untracked file which will basically be ignored by
Git. As we ultimately want to include our small script hello.py into our repository, we follow the advice
and add the file. According to Figure 2.4 this corresponds to moving the file to the so-called staging
area, a prerequisite to ultimately committing the file to the repository. Let us also check the status after
adding the file:

$ git add hello.py
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: hello.py

Note that Git tells us how we could revert the step of adding a file in case of need. Having added a file
to the staging area does not mean that this file has vanished from our working directory. As you can
easily check, it is still there.

At this point it is worth emphasizing that we could collect several files in the staging area. We could
then transfer all files to the repository in one single commit. Committing the file to the repository would
be the next logical step. However, for the sake of illustration, we want to first modify our script. Our
new script could read

for n in range(3):
print("Hello world!")

The status now has changed to:

2 On Github, the default branch nowadays is called main instead of master.

2.5. Basic workflow 9

Tools for Scientific Computing, Release 0.3

$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: hello.py

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: hello.py

It reflects the fact that now there are two versions of our script hello.py. The section “Changes to be
committed” lists the file or files in the staging area. In our example, Git refers to the version which we
added, i.e. the script consisting of just a simple line. This version differs from the file present in our
working directory. This two-line script is listed in the section “Changes not staged for commit”. We
could move it to the staging area right away or at a later point in case we want to commit the two
versions of the script separately. Note that the most recent version of the script is no longer listed as
untracked file because a previous version had been added and the file is tracked now by Git.

Having a file in the staging are, we can now commit it by means of git commit. Doing so will open an
editor allowing to define a commit message describing the purpose of the commit. The commit message
should consist of a single line with preferably at most 50 characters. If necessary, one can add an empty
line followed by a longer explanatory text. If a single-line commit message suffices, one can give the
message as a command line argument:

$ git commit -m 'simple hello world script added'
[master (root-commit) a5b522b] simple hello world script added
1 file changed, 1 insertion(+)
create mode 100644 hello.py
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: hello.py

no changes added to commit (use "git add" and/or "git commit -a")

Checking the status, we see that our two-line script is still unstaged. We could add it to the staging area
and then commit it. Since Git already tracks this file, we can carry out this procedure in one single step.
However, this is only possible if we do not wish to commit more than one file:

$ git commit -a -m 'repetition of hello world implemented'
[master 011ce76] repetition of hello world implemented
1 file changed, 2 insertions(+), 1 deletion(-)
(base) gli@gli-tp14-1:~/git_example$ git status
On branch master
nothing to commit, working tree clean

Now, we have committed two versions of our script as can easily be verified:

$ git log
commit 011ce76b848d6428e900373f177b1f6b2595a524 (HEAD -> master)
Author: Gert-Ludwig Ingold <gert.ingold@physik.uni-augsburg.de>
Date: Wed Apr 27 15:31:01 2022 +0200

(continues on next page)

10 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

(continued from previous page)

repetition of hello world implemented

commit a5b522b125baa24f823df389b1b40f28b3a42bee
Author: Gert-Ludwig Ingold <gert.ingold@physik.uni-augsburg.de>
Date: Wed Apr 27 15:28:41 2022 +0200

simple hello world script added

As we had discussed in Section 2.2 the concept of distributed version control systems does not allow for
sequential revision numbers. Our two commits can thus not be numbered as commit 1 and commit 2.
Instead, commits in Git are identified by their SHA-1 checksum3. The output above lists the hashes
consisting of 40 hexadecimal digits for the two commits. In practice, when referring to a commit, it is
often sufficient to restrict oneself to the first 6 or 7 digits which typically characterize the commit in a
unique way. To obtain idea of how sensitive the SHA-1 hash is with respect to small changes, consider
the following examples:

$ echo Python|sha1sum
79c4e0b5abbd2f67a369ba6ee0b95438c38eb0cb -
$ echo python|sha1sum
32886514c2621f81e01024aa84d0f829d2ce1fad -

Now that we know how to commit one or more files, one can raise the question of how often files should
be committed. Generally, the rule is to commit often. A good strategy is to combine changes in such a
way that they form a logical unit. This approach is particularly helpful if one has to revert to a previous
version. If a logical change affects several files, it is easy to revert this change. If on the other hand, a
big commit comprises many logically different changes, one will have to sort out which changes to revert
and which ones to keep. Therefore, it makes sense to aim at so-called atomic commits where a commit
collects all file changes associated with a minimal logical change4. On the other hand, in the initial
versions of program development, it often does not make sense to do atomic commits. The situation may
change though as the development of the code progresses.

At the end of this section on the basic workflow, we point out one issue which in a sense could already
be addressed in the initial setting up of the repository, but which we can motivate only now. Having
our previous versions safely stored in the repository, we might be brave enough to refactor our script by
defining a function to repeatedly printing a given text. Doing so, we end up with two files

hello.py
from repeat import repeated_print

repeated_print("Hello world!", 3)

and

repeat.py
def repeated_print(text, repetitions):

for n in range(repetitions):
print(text)

We verify that the scripts do what they are supposed to do

$ python hello.py
Hello world!

(continues on next page)

3 SHA-1 is a hash checksum which characterizes an object but does not allow to reconstruct it. Consisting of 160 bits,
it allows for 2160 ≈ 1048 different values.

4 Occasionally, one has made several changes which should be separated into different atomic commits. In such a case
git add -p might come in handy as it allows to select chunks of code while adding a file to the staging area.

2.5. Basic workflow 11

Tools for Scientific Computing, Release 0.3

(continued from previous page)

Hello world!
Hello world!

Everything works fine so that we add the two files to the staging area and check the status before
committing.

$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: hello.py
new file: repeat.py

Untracked files:
(use "git add <file>..." to include in what will be committed)

__pycache__/

Everything looks fine except for the fact that there is an untracked directory __pycache__. This directory
and its content are created during the import of repeat.py and should not go into the repository. After
all, they are automatically generated when needed. Here, it comes in handy to make use of a .gitignore
file. Each line in this file contains one entry which defines files to be ignored by Git. For projects based
on Python, Git proposes a .gitignore file starting with the following lines:

Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

Lines starting with # are interpreted as comments. The second line excludes the directory __pycache__
as well as its content. The star in the last two lines can replace any number of characters. The third line
will exclude all files ending with .pyc, .pyo, and .pyc. For more details see git help ignore and the
collection of gitignore files, in particular Python.gitignore. The .gitignore file should be put under
version control as it might develop over time.

2.6 Working with branches

In the previous section, the result of the command git status contained in its first line the information
On branch master. The existence of one branch strongly suggests that there could be more branches
and this is actually the case. So far, we have been working on the branch which Git had created for us
during initialization and which happens to be called master by default. As the use of branches can be
very useful, we will discuss them in the following.

In the previous section, we had created a Git repository and made a few commits. Suppose that we have
also committed the refactored version of our script as well as the .gitignore file. The history of our
repository then looks as follows:

$ git log --oneline --graph --decorate --all
* aac6d17 (HEAD -> master) .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

Before discussing the output, let us briefly comment on the options used in the git log command.
Usually, this command will be more verbose, giving the full hash value of the commit, the name of the
author and the date of the commit together with the commit message. Using the switch --oneline,
this information can be reduced to a single line. Its content could be configured but we do not need to

12 Chapter 2. Version Control with Git

https://github.com/github/gitignore

Tools for Scientific Computing, Release 0.3

do this here. The options --graph and --all will have an effect once more than one branch is present.
Then, we will obtain a graphical representation of the commit tree, i.e. the relation between the different
branches. In addition, we will be shown information about all branches, not only the branch we are on.
Finally, --decorate shows us references existing for certain commits. In our case, the commit aac6d17
is referred to as HEAD because that is the version we are presently seeing in our working directory. This
is also where the branch master is positioned right now. The usefulness of this information will become
clear once we have more than one branch or when even working with remote branches.

The history documented by the output of git log is linear with the most recent commit on top. As
we have discussed earlier, Git is a distributed version control system. Therefore, we have to expect that
other developers are doing work in parallel which at some time should connect to our work. Otherwise,
we could simply ignore these developers. Consequently, in general we cannot expect the history of our
repository to be as simple as it is up to now.

However, we do not need other developers to have several lines of development running in parallel for
some time. Even for a single developer, it makes sense to keep different lines of development separated at
least for some time. Suppose for the moment that you have a working program that is used to produce
data, the production version of the program. At the same time, you want to develop this program
further, e.g. in order to add functionality or to improve its speed. Such a development should be carried
out separately from the production version so that the latter can easily be accessed in the repository at
any time. Or you have a potentially good idea which you would like to try out, but you do not know
whether this idea will make it into the main code. Again, it is useful to keep the exploration of your idea
separate from the production version of your program. Of course, if the idea turns out to be a good one,
it should be possible to merge the new code into the production version.

The solution to the needs occurring in these scenarios are branches. In a typical scenario, one would
keep the production version in the master branch which in a sense forms the trunk of a tree. At a
certain commit of the master branch, a new branch will take that commit as a parent on which further
development of, e.g., a new aspect of the program is based. There could be different branches extending
from various commits and a branch can have further branches. The picture of a tree thus seems quite
appropriate. However, typically branches will not grow forever in their own direction. Ideally, the result
of the development in a branch should ultimately flow back into the production code, a step referred to
as merging.

Let us take a look at an example. As branches can become a bit confusing once you have several of
them, it makes sense to make sure from time to time that you are still on the right branch. We have not
created a new branch and therefore are on the master branch. This can be verified as follows:

$ git branch
* master

So far, we have only a single branch named master. The star in front indicates that we are indeed on
that branch.

Now suppose that the idea came up not to greet the whole world but a single person instead. This
implies a major change of the program and there is a risk that the program used in production might
not always be working correctly if we do our work on the master branch. It is definitely time to create
a new branch. We call the new branch dev for development but we could choose any other name. In
general, it is a good idea to choose telling names, in particular as the number of branches grows.

The new branch can be created by means of

$ git branch dev

We can verify the existence of the new branch:

$ git branch
dev

* master

As the star indicates, we are still on the master branch, but a new branch named dev exists. Switching
back and forth between different branches is done by means of the switch command. With the following

2.6. Working with branches 13

Tools for Scientific Computing, Release 0.3

commands, we got to the development branch and back to the master branch while verifying where we
are after each checkout:

$ git switch dev
Switched to branch 'dev'
$ git branch
* dev
master

$ git switch master
Switched to branch 'master'
$ git branch
dev

* master

In addition, we can check the history of our repository:

$ git log --oneline --graph --decorate --all
* aac6d17 (HEAD -> master, dev) .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

Now, commit aac6d17 is also part of the branch dev. For the moment, the new branch is not really
visible as branch because we have not done any development.

Above, we have first created a new branch and then switched to the new branch. As one typically wants
to switch to the new branch immediately after having created it, there exists a shortcut:

$ git switch -c dev
Switched to a new branch 'dev'

The option -c demands a new branch to be created.

Everything is set up now to work on the new idea. Let us suppose that at some point you arrive at the
following script:

hello.py
from repeat import repeated_print

def hello(name="", repetitions=1):
if name:

repeated_print(f"Hello, {name}", repetitions)
else:

repeated_print("Hello world!", repetitions)

After committing it, the commit log looks as follows:

$ git log --oneline --graph --decorate --all
* f113188 (HEAD -> dev) name as new argument implemented
* aac6d17 (master) .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

The history is still linear, but clearly the master branch and the development branch are in different
states now. The master branch is still at commit aac6d17 while the development branch is at f113188.
At this point, it is worth going back to the master branch and to check the content of hello.py. At first,
it might appear that we have lost our recent work but this is not the case because we had committed
the new version in the development branch. Switching back to dev, we indeed find the new version of
the script.

14 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

During the development of the new script, we realized that it is a good idea to define a default value for
the number of repetitions and we decide that it is a good idea to make a corresponding change in the
master branch. Before continuing to work in the development branch, we perform the following steps:

1. check out the master branch

$ git switch master

2. make modifications to repeat.py

repeat.py
def repeated_print(text, repetitions=1):

for n in range(repetitions):
print(text)

3. commit the new version of the script

$ git commit -a -m 'default value for number of repetitions defined'

4. check out the development branch

$ git switch dev

The commit history is no longer linear but has clearly separated into two branches:

$ git log --oneline --graph --decorate --all
* 1d9a25f (master) default value for number of repetitions defined
| * f113188 (HEAD -> dev) name as new argument implemented
|/
* aac6d17 .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

Now it is time to complete the script hello.py by adding an exclamation mark after the name and
calling the new function hello:

hello.py
from repeat import repeated_print

def hello(name="", repetitions=1):
if name:

s = "Hello, " + name + "!"
repeated_print(s, repetitions)

else:
repeated_print("Hello world!", repetitions)

if __name__ == "__main__":
hello("Alice", 3)

Before committing the new version, we start thinking about atomic commits. Strictly speaking, we
made two different kinds of changes. We have added the exclamation mark and added the function call.
Instead of going back and making the changes one after the other, we can recall that the option -p allows
to choose which changes to add to the staging area:

$ git add -p hello.py
diff --git a/hello.py b/hello.py
index b2ee076..c287658 100644
--- a/hello.py
+++ b/hello.py

(continues on next page)

2.6. Working with branches 15

Tools for Scientific Computing, Release 0.3

(continued from previous page)

@@ -3,6 +3,9 @@ from repeat import repeated_print

def hello(name="", repetitions=1):
if name:

- repeated_print(f"Hello, {name}", repetitions)
+ repeated_print(f"Hello, {name}!", repetitions)

else:
repeated_print("Hello world!", repetitions)

+
+if __name__ == "__main__":
+ hello("Alice", 3)
(1/1) Stage this hunk [y,n,q,a,d,s,e,?]?

Answering the question with s, i.e. split, we are offered the possibility to add the two changes separately
to the changing area. In this way, we can create two separate commits. After actually doing the commits,
we arrive at the following history:

$ git log --oneline --graph --decorate --all
* a807c98 (HEAD -> dev) function call added
* d07dbda exclamation mark added
* f113188 name as new argument implemented
| * 1d9a25f (master) default value for number of repetitions defined
|/
* aac6d17 .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

Now, it is time to make the new functionality available for production, i.e. to merge the commits from
the development branch into the master branch. To this end, we switch to the master branch and merge
the development branch:

$ git switch master
Switched to branch 'master'
$ git merge dev
Merge made by the 'recursive' strategy.
hello.py | 9 ++++++++-
1 file changed, 8 insertions(+), 1 deletion(-)
$ git log --oneline --graph --decorate --all
* 53e12db (HEAD -> master) Merge branch 'dev'
|\
| * a807c98 (dev) function call added
| * d07dbda exclamation mark added
| * f113188 name as new argument implemented
* | 1d9a25f default value for number of repetitions defined
|/
* aac6d17 .gitignore for Python added
* 98628ce hello world script refactored
* 011ce76 repetition of hello world implemented
* a5b522b simple hello world script added

In this case, Git has made a so-called three-way merge based on the common ancestor of the two branches
(aac6d17) and the current versions in the two branches (1d9a25f) and (a807c98). It is interesting to
compare the script repeat.py in these three versions. The version in the common ancestor was:

repeat.py aac6d17
def repeated_print(text, repetitions):

(continues on next page)

16 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

(continued from previous page)

for n in range(repetitions):
print(text)

In the master branch, we have

repeat.py 1d9a25f
def repeated_print(text, repetitions=1):

for n in range(repetitions):
print(text)

while in the development branch, the script reads

repeat.py a807c98
def repeated_print(text, repetitions):

for n in range(repetitions):
print(text)

Note that in 1d9a25f a default value for the variable repetitions is present while it is not in a807c98.
The common ancestor serves to resolve this discrepancy. Obviously, a change was made in the master
branch while it was not done in the development branch. Therefore, the change is kept. The other
modifications in the branches were not in contradiction, so that the merge could be done automatically
and produced the desired result.

The life of the development branch does not necessarily end here if we decide to continue to work on
it. In fact, the branch dev continues to exist until we decide to delete it. Since all work done in the
development branch is now present in the master branch, we decide to delete the branch dev:

$ git branch -d dev
Deleted branch dev (was a807c98).

An attempt to delete a branch which was not fully merged, will be rejected. This could be the case if
the idea developed in a branch turns out not to be a good idea after all. The deletion of the branch can
be forced by replacing the option -d by -D.

In general, one cannot expect a merge to run as smoothly as in our example. Frequently, a so-called
merge conflict arises. This is quite common if different developers work in the same part of the code
and their results are incompatible. For the sake of example, let us assume that we add a doc string to
the repeated_print function but choose a different text in the master branch and in the development
branch. In the master branch we have

repeat.py in master
def repeated_print(text, repetitions=1):

"""print text repeatedly

"""
for n in range(repetitions):

print(text)

while in the development branch we have chosen a different doc string

repeat.py in dev
def repeated_print(text, repetitions):

"""print text several times"""
for n in range(repetitions):

print(text)

The commit history of which we only show the more recent part now becomes a bit more complex:

2.6. Working with branches 17

Tools for Scientific Computing, Release 0.3

* c3ab8cb (HEAD -> dev) added a doc string
| * cc484da (master) doc string added
| * 53e12db Merge branch 'dev'
| |\
| |/
|/|
* | a807c98 function call added
* | d07dbda exclamation mark added
* | f113188 name as new argument implemented
| * 1d9a25f default value for number of repetitions defined
|/
* aac6d17 .gitignore for Python added

We switch to the master branch and try to merge once more the development branch:

$ git switch master
Switched to branch 'master'
$ git merge dev
Auto-merging repeat.py
CONFLICT (content): Merge conflict in repeat.py
Automatic merge failed; fix conflicts and then commit the result.

This time, the merge fails and Git informs us about a merge conflict. At this point, Git needs to be told
which version of the doc string should be used in the master branch. Let us take a look at our script:

repeat.py
<<<<<<< HEAD
def repeated_print(text, repetitions=1):

"""print text repeatedly

"""
=======
def repeated_print(text, repetitions):

"""print text several times"""
>>>>>>> dev

for n in range(repetitions):
print(text)

There are two blocks separated by =======. The first block starting with <<<<<<< HEAD is the present
version in the master branch where we are right now. The second block terminated by >>>>>>> dev
stems from the development branch. The reason for the conflict lies in the different doc strings. In such
a situation, Git needs help. The script should now be brought into the desired form by using an editor
or a tool to handle merge conflicts. We choose

repeat.py
def repeated_print(text, repetitions=1):

"""print text repeatedly

"""
for n in range(repetitions):

print(text)

but the other version or a version with further modifications would have been possible as well. In order
to tell Git that the version conflict has been resolved, we add it to the staging area and commit it as
usual. The history now looks as follows:

* d10bdbb (HEAD -> master) merge conflict resolved
|\

(continues on next page)

18 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

Gitlab

read/write permissions

user
maintainer

upstream

local Git repo

origin

fork
(only once)

merge request

pull or
fetch/merge

push
pull

Figure 2.5: Workflow for collaborative development in a distributed version control system with a GitLab
instance as central server.

(continued from previous page)

| * c3ab8cb (dev) added a doc string
* | cc484da doc string added
* | 53e12db Merge branch 'dev'
|\|
| * a807c98 function call added
| * d07dbda exclamation mark added
| * f113188 name as new argument implemented
* | 1d9a25f default value for number of repetitions defined
|/
* aac6d17 .gitignore for Python added

While the use of branches can be an extremely valuable technique even for a single developer, branches
will inevitably appear in a multi-developer environment. A good understanding of branches will therefore
be helpful in the following section.

2.7 Collaborative code development with GitLab

So far, we have only worked within a single developer scenario and a local Git repository was sufficient.
However, scientific research is often carried out in teams with several persons working on the same project
at the same time. While a distributed version control system like Git allows each person to work with
her or his local repository for some time, it will become necessary at some point to share code. One way
would be to grant all persons on the project read access to all local repositories. However, in general
such an approach will result in a significant administrative load. It is much more common to exchange
code via a central server, typically a GitLab server run by an institution or a service like GitHub.

Independently of whether one uses a GitLab server or GitHub, the typical setup looks like depicted in
Figure 2.5 and consists of three repositories. In order to understand this setup, we introduce to roles.
The user is representative of one of the individual developers while the maintainer controls the main
project repository. As a consequence of their respective roles, the user has read and write access to her
or his local repository while the maintainer has read and write access to the main project repository, often
referred to as upstream. Within a project team, every member should be able to access the common
code base and therefore should have read access to upstream. In order to avoid that the maintainer
needs read access to the user’s local repository, it is common to create a third repository often called
origin to which the user has read and write access while the maintainer has read access. In order to
facilitate the rights management, origin and upstream are usually hosted on the same central server.
At same point in time, the user creates origin by a process called forking, thereby creating her or his
own copy of upstream. This process needs only to be done once. Afterwards, the code can flow in

2.7. Collaborative code development with GitLab 19

https://github.com/

Tools for Scientific Computing, Release 0.3

Figure 2.6: Creation of a new project in a GitLab repository.

Figure 2.7: During the creation of a project its name and its visibility level need to be defined. In
addition, it makes sense to add a project description and to initialize the repository with a README
file.

counter-clockwise direction in Figure 2.5. The individual steps are as follows:

1. The user can always get the code from the upstream repository, e.g. to use it as basis for the future
development. There are two options, namely git pull and the two-step process git fetch and
git merge which will discuss below.

2. Having read and write access both on the local repository and the origin repository, the user can
git push to move code to the central server. With git pull, code can also be brought from the
central server to a local repository. The latter is particularly useful if the user is working on several
machines with individual local repositories.

3. As long as the user has no write access to upstream, only the maintainer can transfer code from
the user’s origin to upstream. Usually, the user will inform the maintainer by means of a merge
request that code is being ready to be merged into the upstream repository5. After an optional
discussion of the suitability of the code, the maintainer can merge the code into the upstream
repository.

After these conceptual considerations, we discuss a more practical example. The maintainer of the
project will be called Big Boss with username boss and she or he starts by creating a repository for a
project named example. We will first go through the steps required to set up the project and then focus
on how one remotely interacts with this repository either as an owner of the repository or a collaborator
who contributes code via his or her repository.

After logging into a GitLab server, one finds in the dashboard on the top of the screen the possibility
to create a new project as shown in Figure 2.6. In order to actually create a new project, some basic
information is needed as shown in Figure 2.7. Mandatory are the name as well as the visibility level
of the project. A private project will only be visible to the owner and members who were invited to
join the project. Public projects, on the other hand, can be accessed without any authentication. It is
recommended to add a short description of the project so that its purpose becomes apparent to visitors

5 On GitHub, instead of “merge request” the term “pull request” is used, meaning the same.

20 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

Figure 2.8: The new repository can be accessed via the HTTP and SSH protocols. Users with access to
the repository can also fork it.

of the project page. In addition, it is useful to add at least a short README file. This README file
initially will contain the name of the repository and the project description. It can be extended over
time by adding information useful for visitors of the project page. Creating a README file also ensures
that the repository contains at least one file.

Tip: Markup can be used to format the README page. Markup features include headers, lists,
web links and more. GitLab and GitHub recognize markdown (file extension .md) and restructured
text (file extension .rst). We recommend to take a look at the Markdown Style Guide of GitLab and
to experiment with different formatting possibilities. This is also a good opportunity to exercise your
version control skills. You can check the effect of the markup by taking a look at the project page.

The project page shown in Figure 2.8 contains relevant elements for users collaborating on the project.
There is the possibility to create a fork of the project. According to the workflow represented in Figure
2.5, forking a project creates a new repository usually referred to as origin which is based on the
repository referred to as upstream. The key point in forking is to create a repository to which the user
has write access, which need not be the case for the original project.

Furthermore, the screen depicted in Figure 2.8 contains information about the URL under which the
repository can be accessed. We will need this information later on. As the figure shows, the repository
can be accessed via the HTTP protocol which will ask for the username and password, if necessary. An
alternative is the SSH protocol which requires that a public SSH key of the user is stored on the GitLab
server. Finally, Figure 2.8 demonstrates how the information entered when setting up the project is used
to create a minimal README file which is displayed in a formatted way at the bottom of the project
page.

Tip: Information on how to create a SSH key can be found for example in the section GitLab and SSH
keys of the GitLab documentation.

The previous discussion had already the idea of collaborative work on the project in mind. However, for
the moment nobody has access to the project except the owner who had created the project. Additional
team members can be invited in the settings menu by accessing the members page shown in Figure 2.9.
Here, team members can be invited and their permissions can be defined. If a new team member should
be able to contribute code to the project, he or she while typically take on the role of a developer. Figure
2.10 shows that a new team member has been successfully added in the role of a developer. The project

2.7. Collaborative code development with GitLab 21

https://about.gitlab.com/handbook/product/technical-writing/markdown-guide/
https://docs.gitlab.com/ee/ssh/
https://docs.gitlab.com/ee/ssh/

Tools for Scientific Computing, Release 0.3

Figure 2.9: On the setting page, other users can be invited to join the project and their permissions can
be defined.

Figure 2.10: A new team member has been added to the project as developer.

22 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

Figure 2.11: In order to navigate to a repository, one can for example search for it or use a direct link
if one has joined the project recently. This page can be accessed by choosing “Profile” from the avatar
menu in the upper right corner.

maintainer can remove team members at any time by clicking on the red icon on the right.

We are now in a position to explore the collaborative workflow shown in Figure 2.5. There exists an
alternative approach relying on protected branches which we do not cover here6.

For the following discussion, we assume that user boss has created a project called example which can
be accessed as indicated in Figure 2.8. In our case, the HTTP access would be via the address http://
localhost:30080/boss/example.git and for SSH access we would use ssh://git@localhost:30080/
boss/example.git. In a real application, be sure to replace these addresses by the addresses indicated
on the project page. Maintainer boss has invited developer gert to the project team and the latter now
has to set up his system to be able to contribute to project example. During the discussion, it might be
useful to occasionally take a look at Figure 2.5 in order to connect the details to the overall picture.

In a first step, user gert logs into the GitLab server and goes to the project example of user boss. A
possibility to do so consists in searching for the project name in the dashboard as shown in Figure 2.11.
On the user’s profile page, there might be alternative ways like in Figure 2.11 where the repository is
listed because the user joined it recently. At a later stage, it would also be possible to go via the forked
repository or the list of contributed projects. In any case, the user gert will see a page looking almost
like the one displayed in Figure 2.8. In particular, there will be a fork button which initiates the creation
of a fork of the original project as a project of user gert. In the notation of Figure 2.5, a repository
origin has been created as a copy of the present state of the repository upstream.

According to Figure 2.5, the developer now needs to create a local repository for the project based on
his or her own repository on the GitLab server, i.e. the repository referred to as origin. Using the URL
shown in Figure 2.8, the repository is cloned into a local directory as follows:

$ git clone ssh://git@localhost:30022/gert/example.git
Cloning into 'example' ...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Receiving objects: 100% (3/3), done.
$ ls -a example
. .. .git README.md

In the third line, the passphrase for the SSH key needs to be given. If the HTTP protocol were used,
username and password would have been requested. In the last line we see that the directory .git has
been created without the need of initializing the repository. By default, git clone transfers the repository
with its complete history, unless only part of the history is requested by means of the --depth argument.

6 More information on working with protected branches can be found at Protected Branches in the GitLab documenta-
tion.

2.7. Collaborative code development with GitLab 23

https://docs.gitlab.com/ee/user/project/protected_branches.html

Tools for Scientific Computing, Release 0.3

In contrast to the previous sections, we are no longer only working with a local repository but also
with the two remote repositories origin and upstream on the GitLab server. To find out which remote
repositories are locally known, we go to the directory where the repository is located and use:

$ git remote -v
origin ssh://git@localhost:30022/gert/example.git (fetch)
origin ssh://git@localhost:30022/gert/example.git (push)

These lines tell us that the developer’s repository example on the remote server is available for read
and write under the name origin. However, we also need access to the repository usually referred to as
upstream. This can be achieved by telling Git about this remote repository:

$ git remote add upstream ssh://git@localhost:30022/boss/example.git
$ git remote -v
origin ssh://git@localhost:30022/gert/example.git (fetch)
origin ssh://git@localhost:30022/gert/example.git (push)
upstream ssh://git@localhost:30022/boss/example.git (fetch)
upstream ssh://git@localhost:30022/boss/example.git (push)

Now we can refer to the original remote repository as upstream. The existence of a channel for pushing
does not necessarily imply that we have the permission to actually write to upstream.

Being a developer on the example project, we want to contribute code to the project. Already in our
discussion of the workflow within a purely local repository we have seen that it might be useful to do
development work in dedicated branches. The same is true in a setup involving remote repositories. In
the discussion of merge requests we will give an additional argument in favor of using dedicated branches
for different aspects of development. While various approaches to the use of branches are possible, a
judicious choice would be to attribute a special role to the master branch by keeping it in sync with the
upstream repository. By branching off from the master repository, the development activities can be
kept close to the code on upstream, thereby facilitating a later merge into the main code base.

The developer decides to contribute a “Hello world” script to the example project and first creates a new
branch named hello:

$ git checkout -b hello
Switched to a new branch 'hello'
$ git branch
* hello
master

We already now how to commit a script to the new branch. After doing so, the content of the main
directory is:

$ ls -a
. .. .git hello.py README.md

and the history reads:

$ git log --oneline --decorate
* 313a6a5 (HEAD -> hello) hello world script added
* 7219a23 (origin/master, origin/HEAD, master) Initial commit

The local branch master as well as the remote branch origin/master are still at the initial commit
7219a23 while the local branch hello is one commit ahead. The remote repository origin is not aware
of the new branch yet. Furthermore, the local repository has not yet any information about the remote
repository upstream.

In a next step, the developer pushes the new commit or several of them to the remote repository origin
where he or she has write permission:

24 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

Figure 2.12: The script hello.py has been successfully pushed to the remote branch origin/hello. It
can now be brought to the remote repository upstream by means of a merge request.

$ git push -u origin hello
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 328 bytes | 328.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote:
remote: To create a merge request for hello, visit:
remote: http://localhost:30080/gert/example/merge_requests/new?merge_request
→˓%5Bsource_branch%5D=hello
remote:
To ssh://localhost:30022/gert/example.git
* [new branch] hello -> hello
Branch 'hello' set up to track remote branch 'hello' from 'origin'.

Actually, two things have happened here at the same time. The commit 313a6a5 was pushed to the
branch hello on origin. Because of the option -u, the local branch was associated with the remote
branch. From now on, if one wants to push commits from the local branch hello to the corresponding
remote branch, it suffices to use git push. This is not only shorter to type but also avoids to accidentally
push commits to the wrong branch. We can verify that the commit is now present on the remote server
either by means of:

$ git log --oneline --decorate
313a6a5 (HEAD -> hello, origin/hello) hello world script added
7219a23 (origin/master, origin/HEAD, master) Initial commit

where commit 313a6a5 now also refers to origin/hello. Alternatively, one can take a look at the
project page on the GitLab server which will look like Figure 2.12. Make sure that the branch has been
changed from master to hello because that is where the script has been pushed to. It is not and should
not be present in origin/master at this point.

Following the workflow displayed in Figure 2.5, the developer might now want to contribute the new
script to the upstream repository. If the developer has no write access to this repository, he or she can
make a merge request as we will explain now. If, on the other hand, the developer has write access
to the upstream repository, he or she could push the script directly there. However, even with with
write access it might be preferable to contribute code via a merge request and this could be the general
policy applying even to maintainers. The advantage of merge requests is that other team members
can automatically be informed about new contributions and have a chance to discuss them before they
become part of the upstream repository. As long as the person merging the submitted code is different
from the submitter, a second pair of eyes can take a look at the code and spot potential problems. In
the end, the project team or the team leaders have to decide which policy to follow.

2.7. Collaborative code development with GitLab 25

Tools for Scientific Computing, Release 0.3

Figure 2.13: GitLab page for the preparation of a new merge request.

26 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

Figure 2.14: A merge request can be discussed. It can be merged and closed or even closed without
merging if the code has been found to be unsuitable for the project. The page shown here assumes that
the user logged in has write permission for the project.

On the project page shown in Figure 2.12, there is a button in the upper right with the title “Create
merge request” which does precisely what this title says. Clicking this button will bring up a page like
the one depicted in Figure 2.13. It is important to give a descriptive title as it will appear in a list of
potentially many merge requests. In addition, the purpose of the merge request as well as additional
relevant information like design considerations should be stated in the description field. Optionally,
labels can be attributed to the merge request or merge requests can be assigned to milestones. As these
possibilities are mostly of interest in larger projects, we will not discuss them any further here.

At this point, it is appropriate to give the use of branches a bit more consideration. Suppose that the
merge request is not merged into upstream right away and that the developer is continuing development.
After some time, he or she will commit the new work to the hello branch on origin. Then this new
commit will automatically be part of the present merge request even though the new commit might not
be logically related to the merge request. In such a situation, it is better to start a new branch, probably
based on the local master branch.

Even though the merge request is based on code in the repository origin, it will appear in the list
of merge requests for the repository upstream because that is where the code should be merged. The
page of an open merge request looks similar to Figure 2.14. It offers the possibility to view the commits
included in the merge request and to comment on them. Persons with write permission on upstream
have the possibility to merge the commits contained in the merge request and to close it afterwards. If
the code should not be included in upstream, the merge request can also be closed without merging. In
this case, reasons should of course be given in the discussion section. Let us assume that the maintainer
merges the commits in the merge request without further discussion and closes the merge request.

The developer’s code has successfully found its way to the upstream repository. However, his or her
local repository does not yet reflect this change. It is now time to complete the circle depicted in Figure
2.5 and to get the changes from the upstream repository into the local repository. We will assume that
we organise our branches in such a way that the local master branch should be kept in sync with the
master branch in the upstream repository. If we are still in the development branch hello, it is now
time to go back to the master branch:

$ git checkout master
Switched to branch 'master'

(continues on next page)

2.7. Collaborative code development with GitLab 27

Tools for Scientific Computing, Release 0.3

Figure 2.15: At the tab “Settings - Branches” individual branches or all merged branches can be removed.

(continued from previous page)

Your branch is up-to-date with 'origin/master'.

Now, we have two options. With git pull upstream master, the present state of the remote branch
master on upstream would be downloaded and merged into the present local branch. For a better control
of the process, one can split it into two steps:

$ git fetch upstream
remote: Enumerating objects: 1, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 1 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (1/1), done.
* [new branch] master -> upstream/master
$ git merge upstream/master
Updating 7219a23..e55831a
Fast-forward
hello.py | 1 +
1 file changed, 1 insertion(+)
create mode 100644 hello.py

git fetch gets new objects from the master branch and git merge upstream/master merges the
objects from the remote branch upstream/master. The history of the local master repository looks as
follows:

$ git log --oneline --graph --decorate --all
* e55831a (HEAD -> master, upstream/master) Merge branch 'hello' into 'master'
|\
| * 313a6a5 (origin/hello, hello) hello world script added
|/
* 7219a23 (origin/master, origin/HEAD) Initial commit

As we can see, the local master branch and the remote master branch on the upstream repository are
in sync while the master branch on the origin repository is still in its original state. This makes sense
because the hello world script was pushed to the hello repository on the origin repository, but not its
master branch. We can change this by pushing the local master branch to origin.

Before doing so, let us remove the hello branch which we do not need anymore:

$ git push origin --delete hello
To ssh://localhost:30022/gert/example.git
- [deleted] hello
$ git branch -d hello
Deleted branch hello (war 313a6a5).

The first command deleted the remote branch. As an alternative way, one can use the GitLab web
interface as shown in Figure 2.15. There individual branches or all merged branches can be removed.
However, the local references to the remote branches are not yet deleted. If one wants to remove references

28 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

to branches on origin which do no longer exist, one can use git remote prune origin. The second
command above deletes the local branch, provided that no unmerged commits are still present. One can
force deletion of the branch with the option -D but may risk the loss of data. Using -D instead of -d
should thus be done with care.

After pushing the local master branch to origin, the log looks as follows:

$ git push origin master
Counting objects: 1, done.
Writing objects: 100% (1/1), 281 bytes | 281.00 KiB/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To ssh://localhost:30022/gert/example.git

7219a23..e55831a master -> master
$ git log --oneline --decorate --graph
* e55831a (HEAD -> master, upstream/master, origin/master, origin/HEAD) Merge␣
→˓branch 'hello' into 'master'
|\
| * 313a6a5 hello world script added
|/
* 7219a23 Initial commit

All three master branches are now in the same state and we have completed a basic development cycle.

2.8 Sundry topics

2.8.1 Stashing

In the previous sections, we have only discussed the basic workflows with Git and certainly did not even
attempt to be complete. In the day-to-day work with a Git repository, certain problems occasionally
arise. Some of them will be discussed in this section.

For the first scenario, let us assume that we have created a dev branch where we modified the hello.py
script and committed the new version. We can then change between branches without any problem:

$ git checkout -b dev
Switched to a new branch 'dev'
$ cat hello.py
print("Hello world!")
print("Hello world!")
print("Hello world!")
$ git commit -a -m'repetitive output of message'
[dev 01dc5a1] repetitive output of message
1 file changed, 2 insertions(+)
$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
$ git checkout dev
Switched to branch 'dev'

The situation is different if we do not commit the changes. In the following example, we have implemented
the repetitive output by means of a for loop but did not commit the change. Git now does not allow us
to change to the master branch because we might lose data:

$ cat hello.py
for _ in range(3):

print("Hello world!")
$ git checkout master

(continues on next page)

2.8. Sundry topics 29

Tools for Scientific Computing, Release 0.3

(continued from previous page)

error: Your local changes to the following files would be overwritten by checkout:
hello.py

Please commit your changes or stash them before you switch branches.
Aborting

We could force Git to change branches by means of the option -f but probably it is a better idea to
follow the advice given by Git and to commit or stash the changes. We know about committing but what
does stashing mean? The idea is to pack away the uncommitted changes so that they can be retrieved
when we return to the dev branch:

$ git stash
Saved working directory and index state WIP on dev: 01dc5a1 repetitive output of␣
→˓message
$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
$ git checkout dev
Switched to branch 'dev'
$ cat hello.py
print("Hello world!")
print("Hello world!")
print("Hello world!")

After stashing the changes, Git allowed us to switch back and forth between the master and dev branch.
However, after returning to the dev branch it looks as if the script with the for loop were lost. Fortunately,
this is not the case as becomes clear from listing the content of the stash. One can retrieve the modified
script by popping it from the stash:

$ git stash list
stash@{0}: WIP on dev: 01dc5a1 repetitive output of message
$ git stash pop
On branch dev
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: hello.py

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (049ca57b4dda40d0869129482e2d216f82186d75)
$ cat hello.py
for _ in range(3):

print("Hello world!")

As the code example given above demonstrates, one can list the content of the stash. However, after
some time it is easy to forget that one has stashed code in the first place. Therefore, stashing is most
suited for brief interruptions where one needs to change branches for a short period of time. Otherwise,
committing the changes might be a better solution.

2.8.2 Tagging

As we know, a specific revision of the code can be specified by means of its SHA1 value. Occasionally,
it is useful to tag a revision with a name for easier reference. For example, one might want to introduce
different versions of the code tagged by labels like v1, v2 and so on.

The present revision can be tagged as follows:

30 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

$ git tag -a v1 -m "first production release"

Here, the option -a means that an annotated tag is created which will have additional information very
similar to a commit. There can be e.g. a message, here given by means of the option -m, the name of
the tagger and the date. This information and more can be displayed:

$ git show v1
tag v1
Tagger: Gert-Ludwig Ingold <gert.ingold@physik.uni-augsburg.de>
Date: Wed Oct 24 14:23:44 2018 +0200

first production release

commit d08b08646d933e0b7240cbbdbb194143ede1f29c (HEAD -> master, tag: v1)
Merge: a459aec 7a7b8f7
Author: Gert-Ludwig Ingold <gert.ingold@physik.uni-augsburg.de>
Date: Mon Oct 22 09:28:03 2018 +0200

Merge branch 'dev'

It is also possible to tag older revisions by referring to a specific commit like in the following example:

$ git tag -a v0.1 -m "prerelease version" a459aec
$ git tag
v0.1
v1
$ git log --oneline -n5
d08b086 (HEAD -> master, tag: v1) Merge branch 'dev'
7a7b8f7 added doc string
a459aec (tag: v0.1) doc string added
ac805d5 Merge branch 'dev'
41e9e21 function call added

The logs demonstrate that indeed the tags are connected with a certain commit. In addition to annotated
tags, there are also so-called light-weight tags which cannot contain further attributes. Usually, light-
weight tags are employed if they are only temporarily needed.

So far, the tag is only known to the local Git repository. In order for the tag to be known also on a
remote repository like origin, one needs to push the information about the tag:

$ git push origin v1
Enumerating objects: 1, done.
Counting objects: 100% (1/1), done.
Writing objects: 100% (1/1), 187 bytes | 187.00 KiB/s, done.
Total 1 (delta 0), reused 0 (delta 0)
To ssh://localhost:30022/gert/myrepo.git
* [new tag] v1 -> v1

The tag is now also visible on the project’s web page as shown in Figure 2.16.

2.8.3 Detached head state

In Section 2.6, we have seen that we can move between the last commits in different branches. However,
we may not only be interested in the most recent version of the code. After all, the whole point in
keeping the history of a project is to be able to inspect older versions.

There is a number of different ways of specifying commits in Git and we will only mention a few ones.
One possibility is to use the SHA1 value of the commit. In general, the seven first hex digits will be
sufficient. If a commit has been tagged as described in the previous section, the tag can be used instead.

2.8. Sundry topics 31

Tools for Scientific Computing, Release 0.3

Figure 2.16: After a tag has been pushed to the remote repository, it can be used on the project’s web
page to navigate to the commit associated with the tag.

It is also possible to use a relative notation. For example, the first ancestor of HEAD can be obtained by
means of HEAD^. Note though that if the commit was generated by a merge, more than one ancestors can
exist. For details of how in such situation to address a commit relative to another commit is explained
in the git documentation, see e.g.,

$git help revisions
GITREVISIONS(7) Git Manual GITREVISIONS(7)

NAME
gitrevisions - Specifying revisions and ranges for Git

SYNOPSIS
gitrevisions

DESCRIPTION
Many Git commands take revision parameters as arguments. Depending on
the command, they denote a specific commit or, for commands which walk
the revision graph (such as git-log(1)), all commits which are
reachable from that commit. For commands that walk the revision graph
one can also specify a range of revisions explicitly.

In addition, some Git commands (such as git-show(1)) also take revision
parameters which denote other objects than commits, e.g. blobs
("files") or trees ("directories of files").

SPECIFYING REVISIONS
A revision parameter <rev> typically, but not necessarily, names a
commit object. It uses what is called an extended SHA-1 syntax. Here
[...]

Here, we reproduced only part of the help text.

Now let us suppose that the recent history of our repository looks as follows:

d08b086 (HEAD -> master, tag: v1) Merge branch 'dev'
7a7b8f7 added doc string
a459aec (tag: v0.1) doc string added
ac805d5 Merge branch 'dev'
41e9e21 function call added

(continues on next page)

32 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

(continued from previous page)

1bac36d exclamation mark appended
d8d7313 default value for repetitions added
c95fa0e new argument 'name' added

For some reason, we want to take a look at commit 41e9e21 and decide to check this commit out:

$ git checkout 41e9e21
Note: checking out '41e9e21'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 41e9e21 function call added
$ git branch
* (HEAD detached at 41e9e21)
master

The important point here is that the branch is in a so-called “detached head state”. At first sight, this
branch behaves like a usual branch where we can look around and even commit changes. However, once
we leave the branch, there is no way to get back to these commits. As Git explains in the message
reproduced above, one needs to check out the branch into a regular new branch if one wants to keep
the commits generated in a branch in a “detached head state”. If one forgets to do so, Git will give the
following warning:

$ git checkout master
Warning: you are leaving 1 commit behind, not connected to
any of your branches:

4d252a9 'how are you' added

If you want to keep it by creating a new branch, this may be a good time
to do so with:

git branch <new-branch-name> 4d252a9

Switched to branch 'master'

The new branch needs to be created before garbage collection destroys the commit 4d252a9.

2.8.4 Manipulating history

Travelling back in time and changing the past can have strange effects on the future. What is well known
to readers of science fiction also applies to some extent to users of Git. Occasionally, it is tempting to
correct the history of the repository. Reasons can be for example typos in commit messages or stupid
mistakes in the code. When code is concerned, it usually is preferable to simply correct mistakes in
a new commit. On the other hand, it sometimes might make sense to remove a certain commit from
the history. It also happens that right after committing code one realizes that there was a typo in the
commit message. Correcting the message is still possible and usually is not harmful.

Generally speaking, one can get away with manipulations of the history of a repository as long as the
part of the history affected by the manipulations is still completely local. Once the relevant commits have

2.8. Sundry topics 33

Tools for Scientific Computing, Release 0.3

been pushed to a remote repository and others have pulled these commits into their own repositories,
changing the history is a potentially great way to make fellow developers very unhappy, something which
you definitely want to avoid.

Frequently it happens that one commits code and realizes immediately that the commit message contains
a typo. It is rather straightforward to correct such a mistake locally. Suppose that “How are you?” has
been added to the output of the script hello.py and that the recent history looks as follows:

$ git log --oneline -n5
c7be5c2 (HEAD -> master) 'Who are you' added
89f459f Merge branch 'dev'
7a7b8f7 added doc string
a459aec (tag: v0.1) doc string added
ac805d5 Merge branch 'dev'

Clearly, the commit message is wrong and even worse, it is misleading. The commit message of the last
commit can be amended in the following way:

$ git commit --amend -m"'How are you?' added"
[master 3eec1a6] 'How are you?' added
Date: Fri Oct 26 14:49:03 2018 +0200
1 file changed, 1 insertion(+), 1 deletion(-)
$ git log --oneline -n5
3eec1a6 (HEAD -> master) 'How are you?' added
89f459f Merge branch 'dev'
7a7b8f7 added doc string
a459aec (tag: v0.1) doc string added
ac805d5 Merge branch 'dev'

If the option -m is omitted, an editor will be opened to allow you to enter the new commit message.

If you have made a commit erroneously and want to get rid of it, git reset can be used to reset HEAD
to another commit. For example, HEAD^ denotes the first parent of HEAD so that the last commit can be
removed by:

$ git reset --hard HEAD^
HEAD is now at 89f459f Merge branch 'dev'
$ git log --oneline -n5
89f459f (HEAD -> master) Merge branch 'dev'
7a7b8f7 added doc string
a459aec (tag: v0.1) doc string added
ac805d5 Merge branch 'dev'
41e9e21 function call added

As a result, commit 3eec1a6 is gone.

More general changes are possible by means of an interactive rebase. Rebase applies commits on top of
a base tip and doing so interactively allows to decide which commits should actually be applied. While
a rebase can be done within a single branch, we will directly proceed to the discussion of a rebase across
two branches. Suppose that we have the following history:

$ git log --oneline --graph --all
* 06933ed (master) headline modified
| * e0ac1ba (HEAD -> dev) add __name__ to output
| * 8c167c1 Test output amended
|/
* 99091f2 Test script added

The test script test.py should output some headline and the content of the variable __name__. In the
development branch, this headline has been modified and a print statement for the variable __name__
was added. On the other hand, the headline has been modified in the master branch as well. For further

34 Chapter 2. Version Control with Git

Tools for Scientific Computing, Release 0.3

development, the headline from the master branch should be used, so commit 8c167c1 should be replaced
by 06933ed. So solve this issue, an interactive rebase is done on master:

$ git rebase -i master

An editor opens and displays the following information:

pick 8c167c1 Test output amended
pick e0ac1ba add __name__ to output

Rebase 06933ed..e0ac1ba onto 06933ed (2 commands)
#
Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name
t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
. create a merge commit using the original merge commit's
. message (or the oneline, if no original merge commit was
. specified). Use -c <commit> to reword the commit message.
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
#
Note that empty commits are commented out

Replacing pick by drop in front of commit 8c167c1 and leaving the editor, git answers

Auto-merging test.py
CONFLICT (content): Merge conflict in test.py
error: could not apply e0ac1ba... add __name__ to output

Resolve all conflicts manually, mark them as resolved with
"git add/rm <conflicted_files>", then run "git rebase --continue".
You can instead skip this commit: run "git rebase --skip".
To abort and get back to the state before "git rebase", run "git rebase --abort".

Could not apply e0ac1ba... add __name__ to output

The merge conflict needs to be resolved in the usual way so that the rebase can be continued:

$ git add test.py
$ git rebase --continue
[detached HEAD 7c9c8d1] add __name__ to output
1 file changed, 2 insertions(+), 1 deletion(-)
Successfully rebased and updated refs/heads/dev.

The rebase operation was successfully carried out and the new history is:

2.8. Sundry topics 35

Tools for Scientific Computing, Release 0.3

$ git log --oneline --graph --all
* 7c9c8d1 (HEAD -> dev) add __name__ to output
* 06933ed (master) headline modified
* 99091f2 Test script added

Now, commit 7c9c8d1 is following directly after commit 06933ed.

Two comments are in order here. The SHA1 hash of the commit with the commit message add __name__
to output has changed from e0ac1ba to 7c9c8d1. Rebasing thus will create significant problems if the
commits of the development branch have been pushed to a remote branch and pulled from there by
other developers before the rebasing has been carried out. It is therefore strongly recommended that
rebasing is done only if local commits are applied. On the other hand, as we have seen, a rebase gives
us the opportunity to take into account what has happened in the master branch and to resolve merge
conflicts. In this way it can be avoided that a merge request containing commits from the development
branch will contain merge conflicts with the master branch.

36 Chapter 2. Version Control with Git

CHAPTER 3

Testing of code

3.1 Why testing?

Scientific code usually aims at producing new insights which implies that typically the correctness of the
result is difficult to assess. Occasionally, bugs in the code can be identified because the results do not
make any sense. In general the situation may not be that clear. Therefore testing the code is crucial.
However, it is insufficient to test code from time to time in an informal manner. Instead, one should aim
at a comprehensive set of tests which can be applied to the code at any time. Ideally, all code committed
to version control should successfully run the existing tests. Test can then also serve as documentation of
which kind of functionality is guaranteed to work. Furthermore, tests constitute an important safety net
when refactoring code, i.e. when rewriting the inner structure of the code without affecting its external
behavior. Tests running correctly for the old code should do so also for the refactored code.

Whenever a bug has been discovered in the code, it is a good habit to write one or more tests capable of
detecting this bug. While it is barely possible to detect all imaginable bugs with tests, one should ensure
at least that bugs which appeared once do not have a chance to sneak back into the code. Furthermore,
one should add tests for any new functionality implemented. One indicator for the quality of a test suite,
i.e. a collection of tests, is code coverage which says which percentage of lines of code are run during the
tests. In practice, one rarely will reach one hundred percent code coverage but one should nevertheless
strive for a good code coverage. At the same time, code coverage is not the only aspect to look for. One
should also make sure that tests are independent from each other and independent of the logic of the
code, if possible. The meaning of this will become clear in some of the examples presented later. Corner
cases deserve special attention in testing as they are frequently ignored when setting up the logic of a
program.

Tests can be developed in parallel to the code or even after the code has been written. A typical example
for the latter is when the presence of a bug is noticed. Then, the bug should be fixed and a test should
be implemented which will detect the presence of the fixed bug in the future. Another approach is the
so-called test-driven development where the tests are first written. In a second step, the code is developed
until all test run successfully.

Testing a big piece of software is usually difficult to do and as mentioned in the beginning in the
case of scientific software can be almost impossible because one cannot anticipate the result beforehand.
Therefore, one often tests on a much finer level, an approach called unit testing. Here, typically relatively
small functions are tested to make sure that they work as expected. An interesting side effect of unit
testing is often a significant improvement in code structure. Often a function needs to be rewritten in
order to be tested properly. It often needs to be better isolated from the rest of the code and its interface
has to be defined more carefully, thereby improving the quality of the code.

37

Tools for Scientific Computing, Release 0.3

In this chapter, we will be concerned with unit testing and mainly cover two approaches. The first one
are doctests which are implemented in Python within the doc strings of a function or method. The
second approach are unit tests based on asserts using py.test.

3.2 Doctests

The standard way to document a function in Python is a so-called docstring as shown in the following
example.

hello.py

def welcome(name):
"""Print a greeting.

name: name of the person to greet
"""
return f'Hello {name}!'

In our example, the docstring is available as welcome.__doc__ and can also be obtained by means of
help(welcome).

Even though we have not formulated any test, we can run the (non-existing) doctests:

$ python -m doctest hello.py

No news is good news, i.e. the fact that this command does not yield any output implied that no error
occurred in running the tests. One can ask doctest to be more verbose by adding the option -v:

$ python -m doctest -v hello.py
1 items had no tests:

hello.py
0 tests in 1 items.
0 passed and 0 failed.
Test passed.

This message states explicitly that no tests have been run and no tests have failed.

We now add our first doctest. Doing so is quite straightforward. One simply reproduces how a function
call together with its output would look in the Python shell.

hello.py

def welcome(name):
"""Print a greeting.

name: name of the person to greet

>>> welcome('Alice')
'Hello Alice!'
"""
return f'Hello {name}!'

Running the test with the option -v to obtain some output, we find:

$ python -m doctest -v hello.py
Trying:

welcome('Alice')
Expecting:

(continues on next page)

38 Chapter 3. Testing of code

Tools for Scientific Computing, Release 0.3

(continued from previous page)

'Hello Alice!'
ok
1 items had no tests:

hello
1 items passed all tests:

1 tests in hello.welcome
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

Our test passes as expected. It is worth noting that besides providing a test, the last two lines of the
new doc string can also serve as a documentation of how to call the function welcome.

Now let us add a corner case. A special case occurs if no name is given. Even in this situation, the
function should behave properly. However, an appropriate test will reveal in a second that we have not
sufficiently considered this corner case when designing our function.

1 # hello.py
2

3 def welcome(name):
4 """Print a greeting.
5

6 name: name of the person to greet
7

8 >>> welcome('')
9 'Hello!'

10 >>> welcome('Alice')
11 'Hello Alice!'
12 """
13 return f'Hello {name}!'

Running the doctests, we identify our first coding error by means of a test:

$ python -m doctest hello.py
**
File "hello.py", line 8, in hello.welcome
Failed example:

welcome('')
Expected:

'Hello!'
Got:

'Hello !'
**
1 items had failures:

1 of 2 in hello.welcome
Test Failed 1 failures.

The call specified in line 8 of our script failed because we implicitly add a blank which should not be
there. So let us modify our script to make the tests pass.

hello.py

def welcome(name):
"""Print a greeting.

name: name of the person to greet

(continues on next page)

3.2. Doctests 39

Tools for Scientific Computing, Release 0.3

(continued from previous page)

>>> welcome('')
'Hello!'
>>> welcome('Alice')
'Hello Alice!'
"""
if name:

return f'Hello {name}!'
else:

return 'Hello!'

Now the tests pass successfully.

If now we decide to change our script, e.g. by giving a default value to the variable name, we can use
the tests as a safety net. They should run for the modified script as well.

hello.py

def welcome(name=''):
"""Print a greeting.

name: name of the person to greet

>>> welcome('')
'Hello!'
>>> welcome('Alice')
'Hello Alice!'
"""
if name:

return f'Hello {name}!'
else:

return 'Hello!'

Both tests pass successfully. However, we have not yet tested the new default value for the variable name.
So, let us add another test to make sure that everything works fine.

hello.py

def welcome(name=''):
"""Print a greeting.

name: name of the person to greet

>>> welcome()
'Hello!'
>>> welcome('')
'Hello!'
>>> welcome('Alice')
'Hello Alice!'
"""
if name:

return f'Hello {name}!'
else:

return 'Hello!'

All three tests pass successfully.

In a next step development step, we make the function welcome multilingual.

40 Chapter 3. Testing of code

Tools for Scientific Computing, Release 0.3

hello.py

def welcome(name='', lang='en'):
"""Print a greeting.

name: name of the person to greet

>>> welcome()
'Hello!'
>>> welcome('')
'Hello!'
>>> welcome('Alice')
'Hello Alice!'
>>> welcome('Alice', lang='de')
'Hallo Alice!'
"""
hellodict = {'en': 'Hello', 'de': 'Hallo'}
hellostring = hellodict[lang]
if name:

return f'{hellostring} {name}!'
else:

return f'{hellostring}!'

It is interesting to consider the case where the value of lang is not a valid key. Calling the function with
lang set to fr, one obtains:

$ python hello.py
Traceback (most recent call last):
File "hello.py", line 25, in <module>
welcome('Alice', 'fr')

File "hello.py", line 18, in welcome
hellostring = hellodict[lang]

KeyError: 'fr'

Typically, error messages related to exception can be quite complex and it is either cumbersome to
reproduce them in a test or depending on the situation it might even by impossible. One might think
that the complexity of an error message is irrelevant because error messages should not occur in the first
place. However, there are two reasons to consider such a situation. First, it is not uncommon that an
appropriate exception is raised and one should check in a test whether it is properly raised. Second,
more complex outputs appear not only in the context of exceptions and one should know ways to handle
such situations.

Let us assume that we handle the KeyError by raising a ValueError together with an appropriate error
message.

1 # hello.py
2

3 def welcome(name='', lang='en'):
4 """Print a greeting.
5

6 name: name of the person to greet
7

8 >>> welcome()
9 'Hello!'

10 >>> welcome('')
11 'Hello!'
12 >>> welcome('Alice')
13 'Hello Alice!'

(continues on next page)

3.2. Doctests 41

Tools for Scientific Computing, Release 0.3

(continued from previous page)

14 >>> welcome('Alice', lang='de')
15 'Hallo Alice!'
16 >>> welcome('Alice', lang='fr')
17 Traceback (most recent call last):
18 ValueError: unknown language: fr
19 """
20 hellodict = {'en': 'Hello', 'de': 'Hallo'}
21 try:
22 hellostring = hellodict[lang]
23 except KeyError:
24 errmsg = f'unknown language: {lang}'
25 raise ValueError(errmsg)
26 if name:
27 return f'{hellostring} {name}!'
28 else:
29 return f'{hellostring}!'
30

31 if __name__ == '__main__':
32 welcome('Alice', 'fr')

All tests run successfully. Note that in lines 17 and 18 we did not reproduce the full traceback. It was
sufficient to put line 17 which signals that the following traceback can be ignored. Line 18 is checked
again to be consistent with the actual error message. If one does not need to verify the error message
but just the type of exception raised, one can use a doctest directive. For example, one could replace
lines 16 to 18 by the following code.

"""
>>> welcome('Alice', lang='fr') # doctest: +ELLIPSIS
Traceback (most recent call last):
ValueError: ...
"""

The directive is here specified by the comment “# doctest: +ELLIPSIS” and the ellipsis “...” in the
last line will replace any output following the text “ValueError:”.

Another useful directive is +SKIP which tells doctest to skip the test marked in this way. Sometimes,
one has already written a test before the corresponding functionality has been implemented. Then it
may make sense to temporarily deactivate the test to avoid getting distracted from seriously failing tests
by tests which are known beforehand to fail. A complete list of directives can be found in the doctest
documentation. For example, it is worth to check out the directive +NORMALIZE_WHITESPACE which helps
avoiding trouble with different kinds of white spaces.

As we have seen, doctests are easy to write and in addition to testing code they are helpful in documenting
the usage of functions or methods. On the other hand, they are particularly well suited for numerical
tests where results have to agree only to a certain precision. For more complex test cases, it might also
be helpful to choose the approach discussed in the next section instead of using doctests.

3.3 Testing with pytest

For more complex test cases, the Python standard library provides a framework called unittest. Another
often used test framework is nose. Recently, pytest has become very popular which compared unittest
requires less overhead when writing tests. In this section we will focus on pytest which is not part of
the Python standard library but is included e.g. in the Anaconda distribution.

We illustrate the basic usage of pytest by testing a function generating a line of Pascal’s triangle.

42 Chapter 3. Testing of code

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html

Tools for Scientific Computing, Release 0.3

def pascal(n):
"""create the n-th line of Pascal's triangle

The line numbers start with n=0 for the line
containing only the entry 1. The elements of
a line are generated successively.

"""
x = 1
yield x
for k in range(n):

x = x*(n-k)//(k+1)
yield x

if __name__ == '__main__':
for n in range(7):

line = ' '.join(f'{x:2}' for x in pascal(n))
print(str(n)+line.center(25))

Running this script returns the first seven lines of Pascal’s triangle:

$ python pascal.py
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

We will now test the function pascal(n) which returns the elements of the 𝑛-th line of Pascal’s triangle.
The function is based on the fact that the elements of Pascal’s triangle are binomial coefficients. While
the output of the first seven lines looks fine, it make sense to test the function more thoroughly.

The first and most obvious test is to automate at least part of the test which we were just doing visually.
It is always a good idea to check boundary cases. In our case this means that we make sure that n=0
indeed corresponds to the first line. We also check the following line as well as a typical non-trivial
line. We call the following script test_pascal.py because pytest will run scripts with names of the
form test_*.py or *_test.py in the present directory or its subdirectories automatically. Here, the
star stands for any other valid part of a filename. Within the script, the test functions should start with
test_ to distinguish them from other functions which may be present.

from pascal import pascal

def test_n0():
assert list(pascal(0)) == [1]

def test_n1():
assert list(pascal(1)) == [1, 1]

def test_n5():
expected = [1, 4, 6, 4, 1]
assert list(pascal(5)) == expected

The tests contain an assert statement which raises an AssertionError in case the test should fail. In
fact, this will happen for our test script, even though the implementation of the function pascal is not
to blame. In this case, we have inserted a mistake into our test script to show the output of pytest in
the case of errors. Can you find the mistake in the test script? If not, it suffices to run the script:

3.3. Testing with pytest 43

Tools for Scientific Computing, Release 0.3

$ pytest
============================= test session starts =============================
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/gert/pascal, inifile:
plugins: remotedata-0.3.0, openfiles-0.3.0, doctestplus-0.1.3, arraydiff-0.2
collected 3 items

test_pascal.py ..F [100%]

================================== FAILURES ===================================
___________________________________ test_n5 ___________________________________

def test_n5():
expected = [1, 4, 6, 4, 1]

> assert list(pascal(5)) == expected
E assert [1, 5, 10, 10, 5, 1] == [1, 4, 6, 4, 1]
E At index 1 diff: 5 != 4
E Left contains more items, first extra item: 1
E Use -v to get the full diff

test_pascal.py:11: AssertionError
===================== 1 failed, 2 passed in 0.04 seconds ======================

The last line in the first part of the output, before the header entitled FAILURES, pytest gives a summary
of the test run. It ran three tests present in the script test_pascal.py and the result is indicated by ..F
. The two dots represent two successful tests and the F marks test which failed and for which detailed
information is given in the second part of the output. Clearly, the elements of line 5 in Pascal’s triangle
yielded by our function does not coincide with our expectation.

It occasionally happens that a test is known to fail in the present of development. One still may want
to keep the test in the test suite, but it should not be flagged as failure. In such a case, the test can be
decorated with pytest.mark.xfail. Even though decorators can be used without knowing how they
work, it can be useful to have an idea of this concept. A brief introduction to decorators is given in
Section 8.1.

The relevant test then looks as follows

@pytest.mark.xfail
def test_n5():

expected = [1, 4, 6, 4, 1]
assert list(pascal(5)) == expected

In addition, the pytest module need to be imported. Now, the test is marked by an x for expected
failure:

$ pytest
============================= test session starts =============================
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/gert/pascal, inifile:
plugins: remotedata-0.3.0, openfiles-0.3.0, doctestplus-0.1.3, arraydiff-0.2
collected 3 items

test_pascal.py ..x [100%]

===================== 2 passed, 1 xfailed in 0.04 seconds =====================

The marker x is set in lowercase to distinguish it from serious failures like F for a failed test. If a test
expected to fail actually passes, it will be marked by an uppercase X to indicate that corresponding test
should not pass.

44 Chapter 3. Testing of code

Tools for Scientific Computing, Release 0.3

One can also skip tests by means of the decorator pytest.mark.skip which takes an optional variable
reason.

@pytest.mark.skip(reason="just for demonstration")
def test_n5():

expected = [1, 4, 6, 4, 1]
assert list(pascal(5)) == expected

However, the reason will only be listed in the output, if the option -r s is applied:

$ pytest -r s
============================= test session starts =============================
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/gert/pascal, inifile:
plugins: remotedata-0.3.0, openfiles-0.3.0, doctestplus-0.1.3, arraydiff-0.2
collected 3 items

test_pascal.py ..s [100%]
=========================== short test summary info ===========================
SKIP [1] test_pascal.py:10: just for demonstration

===================== 2 passed, 1 skipped in 0.01 seconds =====================

In our case, it is of course better to correct the expected result in function test_n5. The we obtain the
following output from pytest:

$ pytest
============================= test session starts =============================
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1
rootdir: /home/gert/pascal, inifile:
plugins: remotedata-0.3.0, openfiles-0.3.0, doctestplus-0.1.3, arraydiff-0.2
collected 3 items

test_pascal.py ... [100%]

========================== 3 passed in 0.01 seconds ===========================

Now, all tests pass just fine.

One might object that the test so far only verify a few special cases and in particular are limited to
very small values of n. How do we test line 10000 of Pascal’s triangle without having to determine the
expected result? We can test properties related to the fact that the elements of Pascal’s triangle are
binomial coefficients. The sum of the elements in the 𝑛-th line amounts to 2𝑛 and if the sign is changed
from element to element the sum vanishes. This kind of test is quite independent of the logic of the
function pascal and therefore particularly significant. We can implement the two tests in the following
way.

def test_sum():
for n in (10, 100, 1000, 10000):

assert sum(pascal(n)) == 2**n

def test_alternate_sum():
for n in (10, 100, 1000, 10000):

assert sum(alternate(pascal(n))) == 0

def alternate(g):
sign = 1
for elem in g:

yield sign*elem
(continues on next page)

3.3. Testing with pytest 45

Tools for Scientific Computing, Release 0.3

(continued from previous page)

sign = -sign

Here, the name of the function alternate does not start with the string test because this function is
not intended to be executed as a test. Instead, it serves to alternate the sign of subsequent elements
used in the test test_alternate_sum. One can verify that indeed five tests are run. For a change, we
use the option -v for a verbose output listing the name of the test functions being executed.

$ pytest -v
============================ test session starts ============================
platform linux -- Python 3.6.6, pytest-3.8.0, py-1.6.0, pluggy-0.7.1 -- /home/gert/
→˓anaconda3/bin/python
cachedir: .pytest_cache
rootdir: /home/gert/pascal, inifile:
plugins: remotedata-0.3.0, openfiles-0.3.0, doctestplus-0.1.3, arraydiff-0.2
collected 5 items

test_pascal.py::test_n0 PASSED [20%]
test_pascal.py::test_n1 PASSED [40%]
test_pascal.py::test_n5 PASSED [60%]
test_pascal.py::test_sum PASSED [80%]
test_pascal.py::test_alternate_sum PASSED [100%]

========================= 5 passed in 0.10 seconds ==========================

We could also check whether a line in Pascal’s triangle can be constructed from the previous line by
adding neighboring elements. This test is completely independent of the inner logic of the function to be
tested. Furthermore, we can execute it for arbitrary line numbers, at least in principle. We add the test

def test_generate_next_line():
for n in (10, 100, 1000, 10000):

for left, right, new in zip(chain([0], pascal(n)),
chain(pascal(n), [0]),
pascal(n+1)):

assert left+right == new

where we need to add from itertools import chain in the import section of our test script.

The last three of our tests contain loops, but they do not behave like several tests. As soon as an
exception is raised, the test has failed. In contrast our first three tests for the lines in Pascal’s triangle
with numbers 0, 1, and 5 are individual tests which could be unified. How can we do this while the
keeping the individuality of the test? The answer is the parametrize decorator which we use in the
following new version of our test script.

1 import pytest
2 from itertools import chain
3 from pascal import pascal
4

5 @pytest.mark.parametrize("lineno, expected", [
6 (0, [1]),
7 (1, [1, 1]),
8 (5, [1, 5, 10, 10, 5, 1])
9])

10 def test_line(lineno, expected):
11 assert list(pascal(lineno)) == expected
12

13 powers_of_ten = pytest.mark.parametrize("lineno",
14 [10, 100, 1000, 10000])

(continues on next page)

46 Chapter 3. Testing of code

Tools for Scientific Computing, Release 0.3

(continued from previous page)

15

16 @powers_of_ten
17 def test_sum(lineno):
18 assert sum(pascal(lineno)) == 2**lineno
19

20 @powers_of_ten
21 def test_alternate_sum(lineno):
22 assert sum(alternate(pascal(lineno))) == 0
23

24 def alternate(g):
25 sign = 1
26 for elem in g:
27 yield sign*elem
28 sign = -sign
29

30 @powers_of_ten
31 def test_generate_next_line(lineno):
32 for left, right, new in zip(chain([0], pascal(lineno)),
33 chain(pascal(lineno), [0]),
34 pascal(lineno+1)):
35 assert left+right == new

The function test_line replaces the original first three tests. In order to do so, it takes two arguments
which are provided by the decorator in lines 5 to 9. This decorator makes sure that the test function is
run three times with different values of the line number in Pascal’s triangle and the expected result. In
the remaining three test functions, we have replaced the original loop by a parametrize decorator. In
order to avoid repetitive code, we have defined a decorator powers_of_ten in line 13 and 14 which then
is used in three tests. Our script now contains 15 tests.

When discussing doctests, we had seen how one can make sure that a certain exception is raised. Of
course, this can also be achieved with pytest. At least in the present form, it does not make sense to
call pascal with a negative value for the line number. In such a case, a ValueError should be raised, a
behavior which can be tested with the following test.

def test_negative_int():
with pytest.raises(ValueError):

next(pascal(-1))

Here, next explicitly asks the generator to provide us with a value so that the function pascal gets a
chance to check the validity of the line number. Of course, this test will only pass once we have adapted
our function pascal accordingly.

In order to illustrate a problem frequently occurring when writing tests for scientific applications, we
generalize our function pascal to floating point number arguments. As an example, let us choose the
argument 1/3. We would then obtain the coefficients in the Taylor expansion

(1 + 𝑥)1/3 = 1 +
1

3
𝑥− 1

9
𝑥2 +

5

81
𝑥3 + . . .

Be aware that the generator will now provide us with an infinite number of return values so that we
should take care not to let this happen. In the following script pascal_float, we do so by taking
advantage of the fact that zip terminates whenever one of the generators is exhausted.

def taylor_power(power):
"""generate the Taylor coefficients of (1+x)**power

This function is based on the function pascal().

"""
(continues on next page)

3.3. Testing with pytest 47

Tools for Scientific Computing, Release 0.3

(continued from previous page)

coeff = 1
yield coeff
k = 0
while power-k != 0:

coeff = coeff*(power-k)/(k+1)
k = k+1
yield coeff

if __name__ == '__main__':
for n, val in zip(range(5), taylor_power(1/3)):

print(n, val)

We call this script pascal_float.py and obtain the following output by running it:

0 1
1 0.3333333333333333
2 -0.11111111111111112
3 0.0617283950617284
4 -0.0411522633744856

The first four lines match our expectations from the Taylor expansion of (1 + 𝑥)1/3.

We test our new function with the test script test_taylor_power.py.

import pytest
from pascal_float import taylor_power

def test_one_third():
p = taylor_power(1/3)
result = [next(p) for _ in range(4)]
expected = [1, 1/3, -1/9, 5/81]
assert result == expected

The failures section of the output of pytest -v shows where the problem lies:

______________________________ test_one_third _______________________________

def test_one_third():
p = taylor_power(1/3)
result = [next(p) for _ in range(4)]
expected = [1, 1/3, -1/9, 5/81]

> assert result == expected
E assert [1, 0.3333333...7283950617284] == [1, 0.33333333...2839506172839]
E At index 2 diff: -0.11111111111111112 != -0.1111111111111111
E Full diff:
E - [1, 0.3333333333333333, -0.11111111111111112, 0.0617283950617284]
E ? - ^
E + [1, 0.3333333333333333, -0.1111111111111111, 0.06172839506172839]
E ? ^^

test_taylor_power.py:8: AssertionError
========================= 1 failed in 0.04 seconds ==========================

It looks like rounding errors spoil our test and this problem will get worse if we want to check further
coefficients. We are thus left with two problems. First, one needs to have an idea of how well the actual
and the expected result should agree. It is not straightforward to answer this, because the precision of a
result may depend strongly on the numerical methods employed. For a numerical integration, a relative
error of 10−8 might be perfectly acceptable while for a pure rounding error, this value would be too

48 Chapter 3. Testing of code

Tools for Scientific Computing, Release 0.3

large. On a more practical side, how can we test in the presence of numerical errors?

There are actually a number of possibilities. The math-module of the Python standard library provides
a function isclose which allows to check whether two numbers agree up to a given absolute or relative
tolerance. However, one would have to compare each pair of numbers individually and then combine the
Boolean results by means of all. When dealing with arrays, the NumPy library provides a number of
useful functions in its testing module. Several of these functions can be useful when comparing floats.
Finally, pytest itself provides a function approx which can test individual values or values collected in
a list, a NumPy array, or even a dictionary. Using pytest.approx, our test could look as follows.

import math
import pytest
from pascal_float import taylor_power

def test_one_third():
p = taylor_power(1/3)
result = [next(p) for _ in range(4)]
expected = [1, 1/3, -1/9, 5/81]
assert result == pytest.approx(expected, abs=0, rel=1e-15)

Here we test whether the relative tolerance between two values in a pair is at most 10−15. By default,
the absolute tolerance is set to 10−12 and the relative tolerance to 10−6 where in the end the larger value
is taken. If we would not specify abs=0, a very small relative tolerance would be ignored in favor of the
default absolute tolerance. On the other hand, if no relative tolerance is specified, the absolute tolerance
is taken for the comparison.

pytest.approx and math.isclose differ when the relative tolerance is checked. While the first one takes
the relative tolerance with respect to the argument of pytest.approx, the second one checks whether
the relative tolerances are met with respect to both values.

In this section, we have discussed some of the more important aspects of pytest without being complete.
More information can be found in the corresponding documentation. Of interest, in particular if more
extensive tests are written, could be the possibility to group tests in classes. This can also be useful if a
number of tests requires the same setup which then can be defined in a dedicated function.

3.3. Testing with pytest 49

https://docs.pytest.org

Tools for Scientific Computing, Release 0.3

50 Chapter 3. Testing of code

CHAPTER 4

Scientific computing with NumPy and SciPy

4.1 Python scientific ecosystem

Python comes with a rich variety of freely available third-party packages including quite a number of
packages which are routinely used in scientific computing. Before developing code for a standard problem
like an eigenvalue analysis or numerical quadrature to name just two examples, it is recommended to
first check the functionality provided by the existing libraries. It is very likely that such libraries are
more reliable and more efficient than self-developed code. This does not mean though that such libraries
are guaranteed to be error-free and there may exist reasons to develop even basic numerical code oneself.

NumPy1 constitutes the basis of the Python scientific ecosystem. The multi-dimensional array datatype
defined in NumPy is pivotal for a huge number of scientific applications and is made use of in many
ways in the other two core packages SciPy and matplotlib. SciPy provides submodules in many areas
relevant for scientific applications like optimization, signal processing, linear algebra, statistics, special
functions and several more2. Part of the code is written in C or Fortran resulting in fast execution speed.
Matplotlib offers comprehensive support for graphical presentation of data3.

In recent year, the Jupyter notebook, formerly known as IPython notebook, has become very popular,
in particular among the data scientists4. The notebook can be used with Python and a number of other
programming languages like Julia and R and allows to integrate code, text as well as images and other
media in a single file.

In addition, there are a number of more dedicated packages of which we will name a few. The Python
data analysis library pandas5 offers high-performance, easy-to-use data structures and data analysis tools.
Symbolic computation is possible in Python with the help of the sympy package6. Image-processing
routines can be found in scikit-image7. Among the many features of this package, we mention image
segmentation which can for example be used to analyse electron microscope images of heterogeneous
surfaces. Machine learning has recently developed into a very active field which receives excellent support
in Python through the scikit-learn package8.

1 For details see the NumPy Reference.
2 For details see the SciPy API Reference.
3 See the matplotlib gallery to obtain an idea of the possibilities offered by matplotlib.
4 For details see the homepage of the Jupyter project.
5 For details see the pandas homepage.
6 For details see the sympy homepage.
7 For details see the scikit-image homepage.
8 For details see the scikit-learn homepage.

51

https://docs.scipy.org/doc/numpy/reference
https://docs.scipy.org/doc/scipy/reference#api-reference
https://matplotlib.org/gallery/index.html
https://jupyter.org/
https://pandas.pydata.org/
https://www.sympy.org/
https://scikit-image.org
https://https://scikit-learn.org

Tools for Scientific Computing, Release 0.3

Figure 4.1: The data of a digital colour image composed of 𝑁 × 𝑀 pixels can be represented as a
𝑁 ×𝑀 × 3 array where the three planes correspond to the red, green, and blue channels.

We emphasize that the list of packages briefly described here, is not exhaustive and there exist more
interesting Python packages useful in scientific applications. A recommended source of information on
the Python scientific ecosystem are the SciPy lecture notes.

4.2 NumPy

4.2.1 Python lists and matrices

It is rather typical in scientific applications to deal with homogeneous data, i.e. data of the same
datatype, organized in arrays. An obvious example for one-dimensional arrays are vectors in their
coordinate representation and matrices would naturally be stored in two-dimensional arrays. There
also exist applications for even higher-dimensional arrays. The data representing a digital colour image
composed of 𝑁 ×𝑀 pixels can be stored in an 𝑁 ×𝑀 × 3 array with three planes representing the three
colour channels red, green, and blue as visualized in Figure 4.1.

The first question to address is how one can store such data structures in Python and how can one
make sure that the data can be processed fast. Among the standard datatypes available in Python, a
natural candidate would be lists. In Python, lists are very flexible objects which allow to store element
of all kinds of datatypes including lists. While this offers us in principle the possibility to represent
multi-dimensional data, the flexibility comes with a significant computational overhead. As we will see
later, homogeneous data can be handled more efficiently. Leaving the question of efficiency aside for a
moment, we can ask whether list are suited at all to represent matrices.

Let us consider a two-dimensional matrix

M =

⎛⎝1.1 2.2 3.3
4.4 5.5 6.6
7.7 8.8 9.9

⎞⎠ .

It seems natural to store these data in a list of lists

>>> matrix = [[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]

of which a single element can be accessed by first selecting the appropriate row and then the desired
entry

>>> matrix[0]
[1.1, 2.2, 3.3]
>>> matrix[0][2]
3.3

52 Chapter 4. Scientific computing with NumPy and SciPy

https://www.scipy-lectures.org/

Tools for Scientific Computing, Release 0.3

The only difference with respect to the common mathematical notation is that the indices start at 0 and
not at 1. In order to access a single row in a way which makes the two-dimensional character of the
matrix more transparent, we could use

>>> matrix[0][:]
[1.1, 2.2, 3.3]

But does this also work for a column? Let us give it a try.

>>> matrix[:][0]
[1.1, 2.2, 3.3]
>>> matrix[:]
[[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]]

The result is rather disappointing because interchanging the two slices yields again the first row. The
reason can be seen from the lower two lines. In the first step, we obtain again the full list and in the
second step we access its first element, i.e. the first row, not the first column. Even though there are ways
to extract a column from a list of lists, e.g. by means of a list comprehension, there is now consistent
approach to extracting rows and columns from a list of lists. Our construction is certainly not a good
one and we are in need of a new datatype.

4.2.2 NumPy arrays

The new datatype provided by NumPy is a multidimensional homogeneous array of fixed-size items called
ndarray. Before starting to explore this datatype, we need to import the NumPy package. While there
are different ways to do so, there is one recommended way. Let us take a look at the various alternatives:

from numpy import * # don't do this!
from numpy import array, sin, cos # not recommended
import numpy # ok, but the following line is better
import numpy as np # recommended way

Importing the complete namespace of NumPy as done in the first line is no good idea because the
namespace is rather large. Therefore, there is a danger of name conflicts and loss of control. As an
alternative, one could restrict the import to the functions actually needed as shown in the second line.
However, as can be seen in our example, there exist functions like sine (sin) and cosine (cos) in NumPy.
In the body of the code it might not always be evident whether these functions are taken from NumPy
or rather the math or cmath module. It is better to more explicit. The import given in the third line
is acceptable but it requires to put numpy. in front of each object taken from the NumPy namespace.
The usual way to import NumPy is given in the fourth line. Virtually every user seeing np. in the code
will assume that the corresponding object belongs to NumPy. It is always a good idea to stick to such
conventions to render the code easily understandable.

As the next step, we need to create an array and fill it with data. Whenever we are simply referring to
an array, we actually mean an object of datatype ndarray. Given certain similarities with Python lists,
it is tempting to use the append method for that purpose as one often does with lists. In fact, NumPy
provides an append method. However, because Python lists and NumPy arrays are conceptually quite
different, there exist good reasons for avoiding this method if at all possible.

The objects contained in a Python list are typically scattered in memory and the position of each chunk
of data is stored in a list of pointers. In contrast, the data of a NumPy array are stored in one contiguous
piece of memory. As we will see later, this way of storing an array allows to determine by means of a
simple calculation where a certain element can be found. Accessing elements therefore is very efficient.

When appending data to an array, there will generally be no place for the data in memory to guarantee
the array to remain contiguous. Appending data in NumPy thus implies the creation of an entirely new
array. As a consequence, the data constituting the original array have to be moved to a new place in
memory. The time required for this process can become significant for larger arrays and ultimately is
limited by the hardware. Using the append method can thus become a serious performance problem.

4.2. NumPy 53

Tools for Scientific Computing, Release 0.3

Generally, when working with NumPy arrays, it is a good idea to avoid the creation of new arrays as
much as possible as this may drastically degrade performance. In particular, one should not count on
changing the size of an array during the calculation. Already for the creation of the array one should
decide how large it will need to be.

One way to find out how a NumPy array can be created it to search the NumPy documentation. This
can be done even within Python:

>>> np.lookfor('create array')
Search results for 'create array'

numpy.array

Create an array.
numpy.memmap

Create a memory-map to an array stored in a *binary* file on disk.
numpy.diagflat

Create a two-dimensional array with the flattened input as a diagonal.
numpy.fromiter

Create a new 1-dimensional array from an iterable object.
numpy.partition

Return a partitioned copy of an array.

Here, we have only have reproduced a small part of the output. Furthermore, here and in the following,
we assume that NumPy has been imported in the way recommended above so that its namespace can
be accessed via the abbreviation np.

Already the first entry in the list of proposed methods is the one to use in our present situation. More
information can be obtained as usual by means of help(np.array) or alternatively by

>>> np.info(np.array)
array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

Create an array.

Parameters

object : array_like

An array, any object exposing the array interface, an object whose
__array__ method returns an array, or any (nested) sequence.

dtype : data-type, optional
The desired data-type for the array. If not given, then the type will
be determined as the minimum type required to hold the objects in the
sequence. This argument can only be used to 'upcast' the array. For
downcasting, use the .astype(t) method.

Again, only the first part of the output has been reproduced. It is recommended though to take a look at
the rest of the help text as it provides a nice example how doctests can be used both for documentation
purposes and for testing.

As can be seen from the help text, we need at least one argument object which should be an object
with an __array__ method or a possibly nested sequence. Let us consider a first example:

>>> matrix = [[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8]]
>>> myarray = np.array(matrix)
>>> myarray
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

(continues on next page)

54 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

(continued from previous page)

>>> type(myarray)
<class 'numpy.ndarray'>

We have started with a list of lists which is a valid argument for np.array. Printing out the result
indicates indeed that we have obtained a NumPy array. A confirmation is obtained by asking for the
type of myarray.

The data of an array are stored contiguously in memory but what does that really mean for the two-
dimensional array which we have just created? Natural ways would be store the date columnwise or
rowwise. The first variant is realized in the programming language C while the second variant is used by
Fortran. Apart from the actual data, an array obviously needs a number of metadata in order to know
how to interpret the content of the memory space attributed to the area. These metadata are a powerful
concept because they make it possible to change the interpretation of the data without copying them,
thereby contributing to the efficiency of NumPy arrays.

It is useful to get some basic insight into how a NumPy array works. In order to analyze the metadata,
we use a short function enabling us to list the attributes of an array.

def array_attributes(a):
for attr in ('ndim', 'size', 'itemsize', 'dtype', 'shape', 'strides'):

print(f'{attr:8s}: {getattr(a, attr)}')

A convenient way of generating an array for test purposes is the arange function which works very much
like the standard range iterator as far as its basic arguments start, stop, and step are concerned. In
this way, we can easily construct a one-dimensional array with integer entries from 0 to 15 and inspect
its properties:

>>> matrix = np.arange(16)
>>> matrix
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
>>> array_attributes(matrix)
ndim : 1
size : 16
itemsize: 8
dtype : int64
shape : (16,)
strides : (8,)

Let us take a look at the different attributes. The attribute ndim indicates the number of dimension of
the array which in our example is one-dimensional and therefore ndim equals 1. The size of 16 means
that the array contains a total of 16 items. Each item has an itemsize of 8 bytes or 64 bits, resulting
in a total size of 128 bytes:

>>> matrix.nbytes
128

The attribute dtype represents the datatype which in our example is int64, i.e. an integer type of a
length of 64 bits. Quite in contrast to the usual integer type in Python which can in principle handle
integers of arbitrary size, the integer values in our array are clearly limited. An example using integers
of only 8 bits length can serve to illustrate the problem of overflows:

>>> np.arange(1, 160, 10, dtype=np.int8)
array([1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101,

111, 121, -125, -115, -105], dtype=int8)

Take a look at the items in this array and try to understand what is going on.

4.2. NumPy 55

Tools for Scientific Computing, Release 0.3

>>> for k, v in np.core.numerictypes.sctypes.items():
... print(k)
... for elem in v:
... print(f' {elem}')
...
int

<class 'numpy.int8'>
<class 'numpy.int16'>
<class 'numpy.int32'>
<class 'numpy.int64'>

uint
<class 'numpy.uint8'>
<class 'numpy.uint16'>
<class 'numpy.uint32'>
<class 'numpy.uint64'>

float
<class 'numpy.float16'>
<class 'numpy.float32'>
<class 'numpy.float64'>
<class 'numpy.float128'>

complex
<class 'numpy.complex64'>
<class 'numpy.complex128'>
<class 'numpy.complex256'>

others
<class 'bool'>
<class 'object'>
<class 'bytes'>
<class 'str'>
<class 'numpy.void'>

The first four groups of datatypes include integers, unsigned integers, floats and complex numbers of
different sizes. Among the other types, booleans as well as strings are of some interest. Note, however,
that the data in an array always should be homogeneous. If different datatypes are mixed in the
assignment to an array, it may happen that a datatype is cast to a more flexible one. For strings, the
size of each entry will be determined by the longest string.

Probably the most interesting attributes of an array are shape and strides because the allow us to
reinterpret the data of the original one-dimensional array in different ways without the need to copy
from memory to memory. Let us first try to understand the meaning of the tuples (16,) for shape
and (8,) for strides. Both tuples have the same size which equals one because the considered array
is one-dimensional. Therefore, shape does not contain any new information. It simply reflects the size
of the array as does the attribute size. The value of strides means that in order to move from the
beginning of an item in memory to the beginning of the next one, one needs to more eight bytes. This
information is consistent with the itemsize. What seems like redundant information becomes more
interesting when we go from a one-dimensional array to a multi-dimensional array. For simplicity we
convert the our one-dimensional array matrix into a two-dimensional square array. To this purpose we
make use of the reshape method:

>>> matrix = matrix.reshape(4, 4)
>>> matrix
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> array_attributes(matrix)
ndim : 2

(continues on next page)

56 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

0 1 2 3 4 5

8 8 8 8 8

16 16

(16, 8)

0 1 2 3 4 5

8 8 8 8 8

24

(24, 8)

0 1 2 3 4 5

8 8 8 8 8

(8,)

©­«
0 1

2 3

4 5

ª®¬

(
0 1 2

3 4 5

)

(
0 1 2 3 4 5

)

Figure 4.2: Linear data in memory can be interpreted in different ways by appropriately choosing the
strides tuple.

(continued from previous page)

size : 16
itemsize: 8
dtype : int64
shape : (4, 4)
strides : (32, 8)

In the first line, we bring our one-dimensional array with 16 elements into a 4×4 array. Three attributes
change their value in this process. ndim is now 2 because we created a two-dimensional array. The
shape attribute with value (4, 4) reflects the fact that now we have 4 rows and 4 columns. Finally, the
strides are given by the tuple (32, 8). To go in memory from an item to the item in the next column
and in the same row means that we should move by 8 bytes. The two items are neighbors in memory.
However, if we stay within the same column and want to move to the next row, we have to jump by 32
bytes in memory.

To further illustrate the meaning of shape and strides we consider a second example. A linear arrange-
ment of six data in memory can be interpreted in three different ways as depicted in Figure 4.2. In the
uppermost example, strides is set to (8,). The tuple strides tuple contains only one element and we
are therefore dealing with a one-dimensional array. Assuming the datasize to be 8, the array consists of
all six data elements. In the second case, strides are set to (24, 8). Accordingly, the matrix consists
of two rows and three columns. Finally, in the bottom example with strides equal to (16, 8), the
data are interpreted as a matrix consisting of two columns and three rows. Note that no rearrangement
of data in memory is required in order to go from one matrix to another one. Only the way, how the
position of a certain element in memory is obtained, changes when strides is modified.

A two-dimensional matrix can easily be transposed. Behind the scenes the values in the strides tuple
are interchanged:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> a.strides
(continues on next page)

4.2. NumPy 57

Tools for Scientific Computing, Release 0.3

(continued from previous page)

(24, 8)
>>> a.T
array([[0, 3, 6],

[1, 4, 7],
[2, 5, 8]])

>>> a.T.strides
(8, 24)

Strides are a powerful concept. However, one should be careful not to violate the boundaries of the data
because otherwise memory might be interpreted in a meaningless way. In the following two examples,
the first demonstrates an interesting way to create a special pattern of data. The second example, where
one of the strides is only half of the datasize, shows how useless results can be produced:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> a.strides = (8, 8)
>>> a
array([[0, 1, 2, 3],

[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6]])

>>> a.strides = (8, 4)
>>> a
array([[0, 4294967296, 1, 8589934592],

[1, 8589934592, 2, 12884901888],
[2, 12884901888, 3, 17179869184],
[3, 17179869184, 4, 21474836480]])

In the end, the user manipulating strides is responsible for all consequences which his or her action
may have.

4.2.3 Creating arrays

We have seen in the previous section that an array can be created by providing np.array with an object
possessing an __array__ method or a nested sequence. However, this requires to create the object or
nested sequence in the first place. Often, more convenient methods exist. As we have pointed out earlier,
when creating an array, one should have an idea of the desired size and usually also of the datatype to
be stored in the array. Given this information, there exists a variety of methods to create an array
depending on the specific needs.

It is not unusual to start with an array filled with zeros. Let us create a 2× 2 array:

>>> a = np.zeros((2, 2))
>>> a
array([[0., 0.],

[0., 0.]])
>>> a.dtype
dtype('float64')

As we can see, the default type is float64. If we prefer an array of integers, we could specify the dtype:

58 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

>>> a = np.zeros((2, 2), dtype=np.int)
>>> a
array([[0, 0],

[0, 0]])
>>> a.dtype
dtype('int64')

As an alternative, one can create an empty array which should however not be confused with an array
filled with zeros. An empty array will just claim the necessary amount of memory without doing anything
to the data present in that piece of memory. This is fine if one is going to specify the content of all array
data subsequently before using the array. Otherwise, one will deal with random data:

>>> np.empty((3, 3))
array([[6.94870988e-310, 6.94870988e-310, 7.89614591e+150],

[1.37038197e-013, 2.08399685e+064, 3.51988759e+016],
[8.23900250e+015, 7.32845376e+025, 1.71130458e+059]])

An alternative to filling an array with zeros could be to fill it with ones or another value which can be
obtained by multiplication:

>>> np.ones((2, 2))
array([[1., 1.],

[1., 1.]])
>>> 10*np.ones((2, 2))
array([[10., 10.],

[10., 10.]])

As one can see in this example, the multiplication by a number acts on all elements of the array. This
behavior is probably what one would expect at this point. As we will see in Section 4.2.5, we are here
making use of a more general concept referred to as broadcasting.

Often, one needs arrays with more structure than the one we have created so far. It is not uncommon,
that the diagonal entries take a special form. An identity matrix can easily be created:

>>> np.identity(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

The result will always be a square matrix. A more general method to fill the diagonal or a shifted
diagonal is provided by np.eye:

>>> np.eye(2, 4)
array([[1., 0., 0., 0.],

[0., 1., 0., 0.]])
>>> np.eye(4, k=1)
array([[0., 1., 0., 0.],

[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.]])

>>> 2*np.eye(4)-np.eye(4, k=1)-np.eye(4, k=-1)
array([[2., -1., 0., 0.],

[-1., 2., -1., 0.],
[0., -1., 2., -1.],
[0., 0., -1., 2.]])

These examples show that np.eye does not expect a tuple specifying the shape. Instead, the first two
arguments give the number of rows and columns. If the second argument is absent, the resulting matrix
is a square matrix. In the second and third example, the missing second argument is the reason why we

4.2. NumPy 59

Tools for Scientific Computing, Release 0.3

have to specify that the second argument is intended as the shift k of the diagonal. The third example
gives an idea of how the Hamiltonian for the kinetic energy in a tight-binding model can be constructed.

It is also possible to generate diagonals or, by specifying k, shifted diagonals with different values:

>>> np.diag([1, 2, 3, 4])
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

Using a two-dimensional array as argument, its diagonal elements can be extracted by means of the same
function:

>>> matrix = np.arange(16).reshape(4, 4)
>>> matrix
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> np.diag(matrix)
array([0, 5, 10, 15])

If the elements of an array can be expressed as a function of the indices, fromfunction can be used to
generate the elements. As a simple example, we create a multiplication table:

>>> np.fromfunction(lambda i, j: (i+1)*(j+1), shape=(6, 6), dtype=np.int)
array([[1, 2, 3, 4, 5, 6],

[2, 4, 6, 8, 10, 12],
[3, 6, 9, 12, 15, 18],
[4, 8, 12, 16, 20, 24],
[5, 10, 15, 20, 25, 30],
[6, 12, 18, 24, 30, 36]])

Even though we present a two-dimensional example, the latter approach can be used to create arrays of
an arbitrary dimension.

The function used in the previous example was a very simple one. Occasionally, one might need more
complicated functions like one of the trigonometric functions. In fact, NumPy provides a number of
so-called universal functions which we will discuss in Section 4.2.6. Such functions accept an array as
argument and return an array. Here, we will concentrate on creating arguments for universal functions.

A first function is arange which we have used before for integers. It is a generalization of the standard
range which works even for floats:

>>> np.arange(1, 2, 0.1)
array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])

As with range, the first argument is the start value while the second argument refers to the final value
which is not included. Because of rounding errors, the last statement is not always true. Finally, the
third argument is the stepwidth. An alternative is offered by the linspace function which by default
will make sure that the start value and the final value are part of the array. Instead of the stepwidth,
the number of points is specified:

>>> np.linspace(1, 2, 11)
array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.])

A common mistake is to assume that the last argument gives the number of intervals which, however, is
not the case. Thus, there is some danger that one is off by one in the last argument. Sometimes it is
useful to ask for the stepwidth:

60 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

Figure 4.3: Simple example of a function graph generated by operating with a universal function on an
array generated by linspace.

>>> np.linspace(1, 4, 7, retstep=True)
(array([1. , 1.5, 2. , 2.5, 3. , 3.5, 4.]), 0.5)

Here, the stepwidth does not need to be determined by hand.

Occasionally, a logarithmic scale can be useful. In this case, the start value and the final value refer to
the exponent. The base by default is ten but can be modified, if necessary:

>>> np.logspace(0, 3, 4)
array([1., 10., 100., 1000.])
>>> np.logspace(0, 2, 5, base=2)
array([1. , 1.41421356, 2. , 2.82842712, 4.])

The following example illustrate the application of linspace in a universal function to produce a graph-
ical representation of the function:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 2*np.pi, 100)
>>> y = np.sin(x)
>>> plt.plot(x, y)
[<matplotlib.lines.Line2D object at 0x7f22d619cc88>]

The generated graph is reproduced in Figure 4.3.

Arrays can also be filled with data taken from a file. This can for example be the case if data obtained
from a measurement are first stored in a file before being processed or if numerical data are stored before
a graphical representation is produced. Assume that we have a data file called mydata.dat with the
following content:

time position
0.0 0.0
0.1 0.1
0.2 0.4
0.3 0.9

Loading the data from the file, we obtain:

>>> np.loadtxt('mydata.dat')
array([[0. , 0.],

[0.1, 0.1],
[0.2, 0.4],
[0.3, 0.9]])

4.2. NumPy 61

Tools for Scientific Computing, Release 0.3

By default, lines starting with # will be considered as comments and are ignored. The function loadtxt
offers a number of arguments to load data in a rather flexible way. Even more possibilities are offered
by genfromtxt which is also able to deal with missing values. See the documentation of loadtxt and
genfromtxt for more information.

In numerical simulations, it is often necessary to generate random numbers and if many of them are
needed, it may be efficient to generate an array filled with random numbers. While NumPy offers many
different distributions of random numbers, we concentrate on equally distributed random numbers in an
interval from 0 to 1. An array of a given shape filled with such random numbers can be obtained as
follows:

>>> np.random.rand(2, 5)
array([[0.76455979, 0.09264023, 0.47090143, 0.81327348, 0.42954314],

[0.37729755, 0.20315983, 0.62982297, 0.0925838 , 0.37648008]])
>>> np.random.rand(2, 5)
array([[0.23714395, 0.22286043, 0.97736324, 0.19221663, 0.18420108],

[0.14151036, 0.07817544, 0.4896872 , 0.90010128, 0.21834491]])

Clearly, the set of random numbers changes at each call to random.rand. Occasionally, one would like
to have reproducible random numbers, for example during unit tests or to reproduce a particularly
interesting scenario in a simulation. Then one can set a seed:

>>> np.random.seed(123456)
>>> np.random.rand(2, 5)
array([[0.12696983, 0.96671784, 0.26047601, 0.89723652, 0.37674972],

[0.33622174, 0.45137647, 0.84025508, 0.12310214, 0.5430262]])
>>> np.random.seed(123456)
>>> np.random.rand(2, 5)
array([[0.12696983, 0.96671784, 0.26047601, 0.89723652, 0.37674972],

[0.33622174, 0.45137647, 0.84025508, 0.12310214, 0.5430262]])

Sometimes, it is convenient to graphically represent the matrix elements. Figure 4.4 shows an example
generated by the following code:

>>> import matplotlib.pyplot as plt
>>> np.random.seed(42)
>>> data = np.random.rand(20, 20)
>>> plt.imshow(data, cmap=plt.cm.hot, interpolation='none')
<matplotlib.image.AxesImage object at 0x7f39027afe48>
>>> plt.colorbar()
<matplotlib.colorbar.Colorbar object at 0x7f39027e58d0>
>>> plt.show()

Not that the argument interpolation of plt.imshow is set to 'none' to ensure that no interpolation
is done which might blur the image.

4.2.4 Indexing arrays

One way of accessing sets of elements of an array makes use of slices which we know from Python lists.
A slice is characterized by a start index, a stop index whose corresponding element is excluded, and
step which indicates the stepsize. Negative indices are counted from the end of the corresponding array
dimension and a negative value of step implies walking in the direction of decreasing indices.

We start by a few examples of slicing for a one-dimensional array:

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

(continues on next page)

62 Chapter 4. Scientific computing with NumPy and SciPy

https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt

Tools for Scientific Computing, Release 0.3

Figure 4.4: Graphical representation of an array filled with random numbers.

(continued from previous page)

>>> a[:]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[1:4]
array([1, 2, 3])
>>> a[5:-2]
array([5, 6, 7])
>>> a[::2]
array([0, 2, 4, 6, 8])
>>> a[1::2]
array([1, 3, 5, 7, 9])
>>> a[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

The third input, i.e. a[:] leaves the start and stop values open so that all array elements are returned
because by default step equals 1. In the next example, we recall that indices in an array as in a list
start at 0. Therefore, we obtain the second up to the fourth element of the array. In the fifth input, the
second element counted from the end of the array is not part of the result so that we obtain the numbers
from 5 to 7. We could have used a[5:8] instead. In the sixth input, start and stop values are again
left open, so that the resulting array starts with 0 but then proceeds in steps of 2 according to the value
of step given. In the following example, start is set to 1 and we obtain the elements left out in the
previous example. The last example inverts the sequence of array elements by specifying a step of -1.

The use of a[:] deserves a bit more attention. In the case of a list, it would yield a shallow copy of the
original list. For an array, the behavior is somewhat different. Let us first consider an alias:

>>> b = a
>>> b
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> id(a), id(b)
(140493158678656, 140493158678656)
>>> b[0] = 42
>>> a
array([42, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In this case, b is simply an alias for a and refers to the same object. A modification of elements of b will
also be visible in a. Now, let us consider a slice comprising all elements:

>>> a = np.arange(10)
>>> b = a[:]
>>> b
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

(continues on next page)

4.2. NumPy 63

Tools for Scientific Computing, Release 0.3

(continued from previous page)

>>> id(a), id(b)
(140493155003008, 140493155003168)
>>> b[0] = 42
>>> a
array([42, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Now a new object is generated, but it refers to the same piece of memory. A modification of elements in
b will still be visible in a. In order to really obtain a copy of an array, one applies the copy function:

>>> a = np.arange(10)
>>> b = np.copy(a)
>>> b[0] = 42
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b
array([42, 1, 2, 3, 4, 5, 6, 7, 8, 9])

It is rather straightforward to extend the concept of slicing to higher dimensions and we again go through
a number of examples to illustrate the idea. Note that in no case a new array is created in memory so
that slicing is an efficient way of extracting a certain subset of array elements. Our base array is:

>>> a = np.arange(36).reshape(6, 6)
>>> a
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

In view of the two dimensions, we now need two slices separated by a comma, the first one for the rows
and the second one for the columns. The full array is thus recovered by:

>>> a[:, :]
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

A sub-block can be extracted as follows:

>>> a[2:4, 3:6]
array([[15, 16, 17],

[21, 22, 23]])

As already mentioned, the first slice pertains to the rows, so that we choose elements from the third and
fourth row. The second slice refers to columns four to six so that we indeed end up with the output
reproduced above.

Sub-blocks do not need to be contiguous. We can even choose different values for step in different
dimensions:

>>> a[::2, ::3]
array([[0, 3],

[12, 15],
[24, 27]])

64 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

a[0, 0]

a[1, 0]

a[2, 0]

a[0, 1]

a[1, 1]

a[2, 1]

a[0, 2]

a[1, 2]

a[2, 2]

a
x
is
0

axis 1

Figure 4.5: In a two-dimensional array, the first index corresponding to axes 0 denotes the row while the
second index corresponding to axes 1 denotes the column. This convention is consistent with the one
used in mathematics.

In this example, we have selected every second row and every third column. If we want to start with the
third row, we could write:

>>> a[2::2, ::3]
array([[12, 15],

[24, 27]])

The following example illustrates a case where only one slice is specified:

>>> a[2:4]
array([[12, 13, 14, 15, 16, 17],

[18, 19, 20, 21, 22, 23]])

The first slice still applies to the row and the missing second slice is replaced by default by :: representing
all columns.

The interpretation of the last example requires to make connection between the axis number and its
meaning in terms of the array elements. In a two-dimensional array, the position of the indices follows
the convention used in mathematics as shown in Figure 4.5. This correctness of this interpretation can
also be verified by means of operations which can act along a single axis as is the case for sum:

>>> a.sum(axis=0)
array([90, 96, 102, 108, 114, 120])
>>> a.sum(axis=1)
array([15, 51, 87, 123, 159, 195])
>>> a.sum()
630

In the first case, the summation is performed along the columns while in the second case the elements
in a given row are added. If no axis is specified, all array elements are summed.

We illustrate the generalization to higher dimensions by considering a three-dimensional array:

>>> b = np.arange(24).reshape(2, 3, 4)
>>> b
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

Interpreting the array in terms of nested lists, the outer level contains two two-dimensional arrays along
axis 0 as displayed in Figure 4.6. Within the two-dimensional arrays, the outer level corresponds to axis
1 and the innermost level corresponds to axis 2.

Cutting along the three axes, we obtain the following two-dimensional arrays:

4.2. NumPy 65

Tools for Scientific Computing, Release 0.3

12 13 14 15

16 17 18 19

20 21 22 23

0 1 2 3

4 5 6 7

8 9 10 11

a
xi
s
0

a
x
is
1

axis 2

Figure 4.6: A three-dimensional array with its three axes.

>>> b[0]
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> b[:, 0]
array([[0, 1, 2, 3],

[12, 13, 14, 15]])
>>> b[:, :, 0]
array([[0, 4, 8],

[12, 16, 20]])

These three arrays correspond to the front plane along axis 0, the upper plane along axis 1 and the
left-most plane along axis 2, respectively. In the last example, an appropriate number of colons can
simply be replaced by an ellipsis:

>>> b[..., 0]
array([[0, 4, 8],

[12, 16, 20]])

In order to make the meaning of this notation unique, only one ellipsis is permitted, but it may appear
even between indices like in the following example:

>>> c = np.arange(16).reshape(2, 2, 2, 2)
>>> c
array([[[[0, 1],

[2, 3]],

[[4, 5],
[6, 7]]],

[[[8, 9],
[10, 11]],

[[12, 13],
[14, 15]]]])

>>> c[0, ..., 0]
array([[0, 2],

[4, 6]])

When selecting a column in a two-dimensional array, one in principle has two ways to do so. However,
they are leading to different results:

66 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

>>> a[:, 0:1]
array([[0],

[6],
[12],
[18],
[24],
[30]])

>>> a[:, 0]
array([0, 6, 12, 18, 24, 30])

In the first case, a two-dimensional array is produced where the second dimension happens to be of length
1. In the second case, the first column is explicitly selected and one ends up with a one-dimensional
array. This example may lead to the question whether there is a way to convert a one-dimensional array
into a two-dimensional array containing one column or one row. Such a conversion may be necessary in
the context of broadcasting which we will discuss in Section 4.2.5. The following example demonstrates
how the dimension of an array can be increased by means of a newaxis:

>>> d = np.arange(4)
>>> d
array([0, 1, 2, 3])
>>> d[:, np.newaxis]
array([[0],

[1],
[2],
[3]])

>>> d[:, np.newaxis].shape
(4, 1)
>>> d[np.newaxis, :]
array([[0, 1, 2, 3]])
>>> d[np.newaxis, :].shape
(1, 4)

So far, we have selected subsets of array elements by means of slicing. Another option is the so-called
fancy indexing where elements are specified by lists or arrays of integers or Booleans for each dimension
of the array. Let us consider a few examples:

>>> a
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])

>>> a[[0, 2, 1], [1, 3, 5]]
array([1, 15, 11])

The lists for axes 0 and 1 combine to yield the index pairs of the elements to be selected. In our example,
these are a[0, 1], a[2, 3], and a[1, 5]. As this example shows, the indices in one list do not need
to increase. They rather have be to chosen as a function of the elements which shall be selected. In this
example, there is no way how the two-dimensional form of the original array can be maintained and we
simply obtain a one-dimensional array containing the three elements selected by the two lists.

A two-dimensional array can be obtained from an originally two-dimensional array if entire rows or
columns are selected like in the following example:

>>> a[:, [0, 3, 5]]
array([[0, 3, 5],

[6, 9, 11],
(continues on next page)

4.2. NumPy 67

Tools for Scientific Computing, Release 0.3

(continued from previous page)

[12, 15, 17],
[18, 21, 23],
[24, 27, 29],
[30, 33, 35]])

Here, we have only specified a list for axis 1 and chosen entire columns. Note that the chosen columns
are not equidistant and thus cannot be obtained by slicing.

Our last example uses fancy indexing with a boolean array. We create an array of random numbers and
want to set all entries smaller than 0.5 to zero. After creating an array of random numbers from which
we construct a Boolean area by comparing with 0.5. The resulting array is then used not to extract
array elements but to set selected array elements to zero:

>>> randomarray = np.random.rand(10)
>>> randomarray
array([0.48644931, 0.13579493, 0.91986082, 0.38554513, 0.38398479,

0.61285717, 0.60428045, 0.01715505, 0.44574082, 0.85642709])
>>> indexarray = randomarray < 0.5
>>> indexarray
array([True, True, False, True, True, False, False, True, True,

False])
>>> randomarray[indexarray] = 0
>>> randomarray
array([0. , 0. , 0.91986082, 0. , 0. ,

0.61285717, 0.60428045, 0. , 0. , 0.85642709])

If instead of setting values below 0.5 to zero, we would have wanted to set them to 0.5, we could have
avoided fancy indexing by using np.clip.

As an application of slicing and fancy indexing, we consider a NumPy implementation of the sieve of
Eratosthenes to determine prime numbers. The principle is illustrated in Figure 4.7 where the steps
required to determine all prime numbers below 50 are depicted. We start out with a list of integers up
to 49. It is convenient to include 0 to be consistent with the fact that indexing starts at 0 in NumPy.
A corresponding array is_prime is initialized with the Boolean value True. In each iteration numbers
found not be prime have their value set to False. Initially, we mark 0 and 1 as non-primes.

Now we iterate through the array and consider successively each prime number which we can find. The
first one will be 2. Clearly, all multiples of 2 are not prime and we can cross them out. The next prime
is 3, but now we can start crossing out multiples of 3 at 9. In general, for a prime number 𝑝, we start
crossing out multiples of 𝑝 at 𝑝2 because all smaller multiples of 𝑝 have been crossed out before. The
maximum number to be considered as candidate is the largest integer smaller or equal to the maximum
integer to be considered. In our example, we consider integers up to 49 and thus the largest candidate
is 7 which happens to be prime.

This algorithm can be implemented in the following way where we have chosen to print not only the
final result but also the intermediate steps.

1 import math
2 import numpy as np
3

4 nmax = 49
5 integers = np.arange(nmax+1)
6 is_prime = np.ones(nmax+1, dtype=bool)
7 is_prime[:2] = False
8 for j in range(2, int(math.sqrt(nmax))+1):
9 if is_prime[j]:

10 is_prime[j*j::j] = False
11 print(integers[is_prime])

68 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

2 3 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

2 3 5 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

2 3 5 7 11 13 17 19 23

29 31 37 41 43 47

Figure 4.7: Iteration steps when the sieve of Eratosthenes is used to determine the prime numbers below
50. For details see the main text.

This script produces the following output:

[2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49]
[2 3 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49]
[2 3 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49]
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 49]
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 49]
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

In line 6 of the Python code, we use np.ones with type bool to mark all entries as potential primes.
In line 10, slicing is used to mark all multiples of j starting at the square of j as non-primes. Finally,
in line 11, fancy indexing is used. The Boolean array is_prime indicates through the value True which
entries in the array integers should be printed.

4.2.5 Broadcasting

In the previous sections, we have seen examples where an operation involved a scalar value and an array.
This was the case in Section 4.2.3 where we multiplied an array created by np.ones with a number.
Another example appeared in Section 4.2.4 where in our discussion of fancy indexing we compared an
array with a single number. Even though NumPy behaved in a perfectly natural way, these examples
are special cases of a more general concept, the so-called broadcasting.

An array can be broadcast to a larger array provided the shapes satisfy certain conditions. In order to
obtain the same dimension as the one of the target array, dimensions of size 1 are prepended. Then,
each component of the shape of the original array has to be equal to the corresponding component of
the shape of the target array or the component has to equal 1. In Figure 4.8, the target array has shape
(3, 4). The arrays with shapes (1,), (4,), and (3, 1) satisfy this conditions and can be broadcast
as shown in the figure. In contrast, this is not possible for an array of shape (3,) as is demonstrated in
the figure. We emphasize the difference between the arrays of shape (3,) and (3, 1).

As the second image in Figure 4.8 shows, a scalar is broadcast to an array of the desired shape with all
elements being equal. Multiplying an array with a scalar, we expect that each array element is multiplied
by the scalar. As a consequence, the multiplication of two arrays is carried out element by element. In
other words, a matrix multiplication cannot be done by means of the * operator:

4.2. NumPy 69

Tools for Scientific Computing, Release 0.3

shape=(3, 4)

1

5

9

2

6

10

3

7

11

4

8

12

shape=(1,)

1

1

1

1

1

1

1

1

1

1

1

1

1

shape=(4,)

1

1

1

2

2

2

3

3

3

4

4

4

1 2 3 4

shape=(3,)

1 2 3

shape=(3, 1)

1

5

9

1

5

9

1

5

9

1

5

9

1

5

9

Figure 4.8: For appropriate shapes, the matrix elements in the highlighted cells can be broadcast to
create the full shape (3, 4) in this example. An array of shape (3,) cannot be broadcast to shape (3,
4)

>>> a = np.arange(4).reshape(2, 2)
>>> a
array([[0, 1],

[2, 3]])
>>> b = np.arange(4, 8).reshape(2, 2)
>>> b
array([[4, 5],

[6, 7]])
>>> a*b
array([[0, 5],

[12, 21]])

The matrix multiplication can be achieved in a number of different ways:

>>> np.dot(a, b)
array([[6, 7],

[26, 31]])
>>> a.dot(b)
array([[6, 7],

[26, 31]])
>>> a @ b
array([[6, 7],

[26, 31]])

The use of the @ operator for the matrix multiplication requires at least Python 3.5 and NumPy 1.10.

4.2.6 Universal functions

The mathematical functions provided by the math and cmath modules from the Python standard library
accept only single real or complex values but no arrays. For the latter purpose, NumPy and also the
scientific library SciPy offer so-called universal functions:

>>> import math
>>> x = np.linspace(0, 2, 11)
>>> x
array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2.])

(continues on next page)

70 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

(continued from previous page)

>>> math.sin(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: only size-1 arrays can be converted to Python scalars
>>> np.sin(x)
array([0. , 0.19866933, 0.38941834, 0.56464247, 0.71735609,

0.84147098, 0.93203909, 0.98544973, 0.9995736 , 0.97384763,
0.90929743])

Universal functions can handle multi-dimensional arrays as well:

>>> x = np.array([[0, np.pi/2], [np.pi, 3/2*np.pi]])
>>> x
array([[0. , 1.57079633],

[3.14159265, 4.71238898]])
>>> np.sin(x)
array([[0.0000000e+00, 1.0000000e+00],

[1.2246468e-16, -1.0000000e+00]])

This example shows that the mathematical constant 𝜋 is not only available from the math and cmath
modules but also from the NumPy package. Many of the functions provided by the math module are
available as universal functions in NumPy and NumPy offers a few universal functions not available as
normal functions neither in math nor in cmath. Details on the functions provided by NumPy are given
in the section on Mathematical functions in the NumPy reference guide.

While the universal functions in NumPy are mostly restricted to the common mathematical functions,
special functions are available through the SciPy package. Often but not always, these functions are
implemented as universal functions as well. As an example, we create a plot of the Airy function Ai(𝑥)
appearing e.g. in the theory of the rainbow or the quantum mechanics in a linear potential:

>>> from scipy.special import airy
>>> x = np.linspace(-20, 5, 300)
>>> ai, aip, bi, bip = airy(x)
>>> plt.plot(x, ai, label="Ai(x)")
[<matplotlib.lines.Line2D object at 0x7f62184e2278>]
>>> plt.plot(x, aip, label="Ai'(x)")
[<matplotlib.lines.Line2D object at 0x7f621bbb4518>]
>>> plt.legend()
>>> plt.show()

There exist two types of Airy functions Ai(𝑥) and Bi(𝑥) which together with their derivatives are calcu-
lated by the airy function in one go. The Airy function Ai(𝑥) and its derivative are displayed in Figure
4.9.

Occasionally, one needs to create a two-dimensional plot of a function of two variables. In order to
ensure that the resulting array is two-dimensional, the one-dimensional arrays for the two variables need
to run along different axes. A convenient way to do so is the mesh grid. The function mgrid creates two
two-dimensional arrays where in one array the values change along the column while in the other array
they change along the rows:

>>> np.mgrid[0:2:0.5, 0:1:0.5]
array([[[0. , 0.],

[0.5, 0.5],
[1. , 1.],
[1.5, 1.5]],

[[0. , 0.5],
[0. , 0.5],

(continues on next page)

4.2. NumPy 71

https://docs.scipy.org/doc/numpy/reference/routines.math.html

Tools for Scientific Computing, Release 0.3

Figure 4.9: Airy function Ai(𝑥) and its derivative.

Figure 4.10: Application of the mesh grid in a two-dimensional representation of the function sin(𝑥𝑦).

(continued from previous page)

[0. , 0.5],
[0. , 0.5]]])

The slicing syntax corresponds to what we are used from the arange function. The equivalence of the
linspace function can be obtained by making the third argument imaginary:

>>> np.mgrid[0:2:3j, 0:2:5j]
array([[[0. , 0. , 0. , 0. , 0.],

[1. , 1. , 1. , 1. , 1.],
[2. , 2. , 2. , 2. , 2.]],

[[0. , 0.5, 1. , 1.5, 2.],
[0. , 0.5, 1. , 1.5, 2.],
[0. , 0.5, 1. , 1.5, 2.]]])

A practical application produced by the following code is shown in Figure 4.10:

>>> x, y = np.mgrid[-5:5:100j, -5:5:100j]
>>> plt.imshow(np.sin(x*y))
<matplotlib.image.AxesImage object at 0x7fde9176ea90>
>>> plt.show()

Making use of broadcasting, one can reduce the memory requirement by creating an open mesh grid
instead:

72 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

Figure 4.11: Two-dimensional plot of the family of Bessel functions 𝐽𝜈(𝑥) of order 𝜈 created by means
of an open mesh grid created by ogrid.

>>> np.ogrid[0:2:3j, 0:1:5j]
[array([[0.],

[1.],
[2.]]), array([[0. , 0.25, 0.5 , 0.75, 1.]])]

The function ogrid returns two two-dimensional arrays where one dimension is of length 1. Figure 4.11
shows an application to Bessel functions obtained by means of the following code:

>>> from scipy.special import jv
>>> nu, x = np.ogrid[0:10:41j, 0:20:100j]
>>> plt.imshow(jv(nu, x), origin='lower')
<matplotlib.image.AxesImage object at 0x7fde903736d8>
>>> plt.xlabel('x')
Text(0.5,0,'x')
>>> plt.ylabel(r'ν')
Text(0,0.5,'$\\nu$')
>>> plt.show()

Instead of using the ogrid function, one can also construct the argument arrays by hand. In this case,
one has to take care of adding an additional axis in one of the two arrays as in the following example
which results in Figure 4.12:

>>> x = np.linspace(-40, 40, 500)
>>> y = x[:, np.newaxis]
>>> z = np.sin(np.hypot(x-10, y))+np.sin(np.hypot(x+10, y))
>>> plt.imshow(z)
<matplotlib.image.AxesImage object at 0x7fde92509278>
>>> plt.show()

So far, we have considered universal functions mostly as a convenient way to apply a function to an
entire array. However, they can also make a significant contribution to speed up code. The following
script compares the runtime between a for loop evaluating the sine function taken from the math module
and a direct evaluation of the sine taken from NumPy for different array sizes:

import math
import matplotlib.pyplot as plt
import numpy as np
import time

def sin_math(nmax):
xvals = np.linspace(0, 2*np.pi, nmax)
start = time.time()

(continues on next page)

4.2. NumPy 73

Tools for Scientific Computing, Release 0.3

Figure 4.12: Interference pattern created with argument arrays obtained by means of linspace and by
adding an additional axis in one of the two arrays. The function hypot determines the distance of the
point given by the two argument coordinates from the origin.

(continued from previous page)

for x in xvals:
y = math.sin(x)

return time.time()-start

def sin_numpy(nmax):
xvals = np.linspace(0, 2*np.pi, nmax)
start = time.time()
yvals = np.sin(xvals)
return time.time()-start

maxpower = 26
nvals = 2**np.arange(0, maxpower+1)
tvals = np.empty_like(nvals)
for nr, nmax in enumerate(nvals):

tvals[nr] = sin_math(nmax)/sin_numpy(nmax)
plt.rc('text', usetex=True)
plt.xscale('log')
plt.yscale('log')
plt.xlabel('n_max', fontsize=20)
plt.ylabel('$t_\mathrm{math}/t_\mathrm{numpy}$', fontsize=20)
plt.plot(nvals, tvals, 'o')
plt.show()

The results are presented in Figure 4.13 and depend on various factors including the hardware and
details of the software environment. The data should therefore give a rough indication of the speedup
and should not be taken too literally. The first point to note is that even for an array of size 1, NumPy is
faster than the sine function taken from the math module. This seems to contradict our previous result
on a scalar argument, but can be explained by the presence of the for loop in the sin_math function
which results in an overhead even if the for loop is strictly speaking unnecessary. Then, for arrays of an
intermediate size, a speed up of roughly a factor of 7 is observed. Interestingly, for array sizes beyond
a few times 104, the speed up reaches values of around 100. This behavior can be explained by the use
of the Anaconda distribution where NumPy is compiled to support Intel’s math kernel library (MKL).
Even without this effect, a speed up between 5 and 10 may be significant enough to seriously consider
the use of universal functions.

74 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

Figure 4.13: Runtime comparison between the sine function taken from the math module and from the
NumPy package as a function of the array size. Larger values of the time ratio imply a larger speed up
gained by means of NumPy. The data have been obtained by a version of NumPy with MKL support.

4.2.7 Linear algebra

Scientific problems which can be formulated in terms of vectors or matrices often require tools of linear
algebra. Therefore, we will discuss a few of the more important functions NumPy has to offer in that
domain. For more details we recommend to take a look at the documentation of the numpy.linalg module.

As we have discussed earlier, the usual multiplication operator does element-wise multiplication and uses
broadcasting where applicable. The multiplication of arrays can either be done by means of the dot
method or the @ operator:

>>> v1 = np.array([1, 2])
>>> v2 = np.array([3, 4])
>>> np.dot(v1, v2)
11
>>> m = np.array([[5, 6], [7, 8]])
>>> np.dot(m, v1)
array([17, 23])
>>> m @ v1
array([17, 23])

For the following, we will need to load the numpy.linalg module first:

>>> import numpy.linalg as LA

Here we have once more introduced a commonly used abbreviation. A vector can easily be normalized
by means of the norm function:

>>> v = np.array([1, -2, 3])
>>> n = LA.norm(v)
>>> n**2
14.0
>>> v_normalized = v/n
>>> LA.norm(v_normalized)
1.0

Applying the norm function to a multi-dimensional array will return the Frobenius or Hilbert-Schmid
norm, i.e. the square root of the sum over the squares of all matrix elements.

Some of the operations provided by the numpy.linalg module can be applied to a whole set of arrays.
An example is the determinant which mathematically is defined only for two-dimensional arrays. For a
three-dimensional array, determinants are calculated for each value of the index of axis 0:

4.2. NumPy 75

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Tools for Scientific Computing, Release 0.3

>>> m = np.arange(12).reshape(3, 2, 2)
>>> m
array([[[0, 1],

[2, 3]],

[[4, 5],
[6, 7]],

[[8, 9],
[10, 11]]])

>>> LA.det(m)
array([-2., -2., -2.])

It is also possible to determine the inverse for several matrices at the same time. Trying to invert a
non-invertible matrix will result in a numpy.linalg.linalg.LinAlgError exception.

An inhomogeneous system of linear equations ax=b with a matrix a and a vector b can in principle be
solved by inverting the matrix:

>>> a = np.array([[2, -1], [-3, 2]])
>>> b = np.array([1, 2])
>>> x = np.dot(LA.inv(a), b)
>>> x
array([4., 7.])
>>> np.dot(a, x)
array([1., 2.])

In the last command, we verified that the solution obtained one line above is indeed correct. Solving
inhomogeneous systems of linear equations by inversion is however not very efficient and NumPy offers
an alternative way based on an LU decomposition:

>>> LA.solve(a, b)
array([4., 7.])

As we have seen above for the determinant, the function solve also allows to solve several inhomogeneous
systems of linear equations in one function call.

A frequent task in scientific applications is to solve an eigenvalue problem. The function eig determines
the right eigenvectors and the associated eigenvalues for arbitrary square matrices:

>>> a = np.array([[1, 3], [4, -1]])
>>> evals, evecs = LA.eig(a)
>>> evals
array([3.60555128, -3.60555128])
>>> evecs
array([[0.75499722, -0.54580557],

[0.65572799, 0.83791185]])
>>> for n in range(evecs.shape[0]):
... print(np.dot(a, evecs[:, n]), evals[n]*evecs[:, n])
...
[2.72218119 2.36426089] [2.72218119 2.36426089]
[1.96792999 -3.02113415] [1.96792999 -3.02113415]

In the for loop, we compare the product of matrix and eigenvector with the corresponding product of
eigenvalue and eigenvector and can verify that the results are indeed correct. In the matrix of eigenvec-
tors, the eigenvectors are given by the columns.

Occasionally, it is sufficient to know the eigenvalues. In order to reduce the compute time, one can then
replace eig by eigvals:

76 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

>>> LA.eigvals(a)
array([3.60555128, -3.60555128])

In many applications, the matrices appearing in eigenvalue problems are either symmetric of Hermitian.
For these cases, NumPy provides the functions eigh and eigvalsh. One advantage is that it suffices to
store only half of the matrix elements. More importantly, these specialized functions are much faster:

>>> import timeit
>>> a = np.random.random(250000).reshape(500, 500)
>>> a = a+a.T
>>> timeit.repeat('LA.eig(a)', number=100, globals=globals())
[13.307299479999529, 13.404196323999713, 13.798628489999828]
>>> timeit.repeat('LA.eigh(a)', number=100, globals=globals())
[1.8066274120001253, 1.7375857540000652, 1.739574907000133]

In the third line, we have made sure that the initial random matrix is turned into a symmetric matrix
by adding its transpose. In this example, we observe a speedup of about a factor of 7.

4.3 SciPy

The functions offered through the SciPy package cover many tasks typically encountered in the numerical
treatment of scientific problems. Here, we can only give an impression of the potential of SciPy by
discussing a few examples. It is highly recommended to take a look at the SciPy API Reference.

As a first example, we consider the linear regression of noisy data. In a first step, we create data on a
line with normally distributed noise added on top:

>>> x = np.linspace(0, 10, 101)
>>> y = 2*x + 1 + np.random.normal(0, 1, 101)

Now, we can use the linregress function from the statistical functions module of SciPy to do a least-
squares regression of the noisy data:

>>> from scipy.stats import linregress
>>> slope, intercept, rvalue, pvalue, stderr = linregress(x, y)
>>> plt.plot(x, y, 'o')
>>> plt.plot(x, slope*x + intercept)
>>> plt.show()
>>> print(rvalue, stderr)
0.9853966954685487 0.0350427823008272

Here rvalue refers to the correlation coefficient and stderr is the standard error of the estimated
gradient. The graph containing the noisy data and the linear fit is shown in Figure 4.14.

Fitting of data cannot always be reduced to linear regression. Then we can resort to the curve_fit
function from the optimization module of SciPy:

>>> from scipy.optimize import curve_fit
>>> def fitfunc(x, a, b):
... return a*np.sin(x+b)
...
>>> x = np.linspace(0, 10, 101)
>>> y = 2*np.sin(x+0.5) + np.random.normal(0, 1, 101)
>>> plt.plot(x, y, 'o')
>>> popt, pcov = curve_fit(fitfunc, x, y)
>>> popt
array([2.08496412, 0.43937489])

(continues on next page)

4.3. SciPy 77

https://docs.scipy.org/doc/scipy/reference#api-reference

Tools for Scientific Computing, Release 0.3

Figure 4.14: Noisy data (blue points) and result of the linear regression (orange line) obtained by means
of scipy.stats.linregress.

Figure 4.15: Fit of a noisy sine function by means of scipy.optimize.curve_fit.

(continued from previous page)

>>> plt.plot(x, popt[0]*np.sin(x+popt[1]))
>>> plt.show()

In order to fit to a general function, one needs to provide curve_fit with a function, called fitfunc
here, which depends on the variable as well as a set of parameters. In our example, we have chosen
two parameters a and b but we are in principle not limited to this number. However, as the number of
parameters increases, the fit tends to become less reliable. The fit values for the parameters are returned
in the array popt together with the covariance matrix for the parameters pcov. The outcome of the fit
is shown in Figure 4.15.

Occasionally, a root search is required. As an example, we consider the determination of the ground
state energy in a finite potential well. The eigenvalue condition for a symmetric eigenstate reads

√
𝜖 cos(𝛼

√
1− 𝜖)−

√
1− 𝜖 sin(𝛼

√
1− 𝜖) = 0 ,

where 𝜖 is the energy in units of the well depth and 𝛼 is a measure of the potential strength combining
the well depth and its width. One way of solving this nonlinear equation for 𝜖 is by means of the brentq
function, which needs at least the function of which the root should be determined as well as the bounds
of an interval in which the function changes its sign. If the potential well is sufficiently shallow, i.e. if
:math.“alpha“ is sufficiently small, the left-hand side contains only one root as can be seen from the blue
line in Figure 4.16. In our example, the function requires an additional argument 𝛼 which also needs
to be given to brentq. Finally, in order to know how many iterations are need, we set full_output to
True.

78 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

Figure 4.16: Determination of the ground state energy in a finite potential well of depth 𝛼 = 1 by means
of scipy.optimize.brentq.

>>> from scipy.optimize import brentq
>>> def f(energy, alpha):
... sqrt_1me = np.sqrt(1-energy)
... return (np.sqrt(energy)*np.cos(alpha*sqrt_1me)
... -sqrt_1me*np.sin(alpha*sqrt_1me))
...
>>> alpha = 1
>>> x0, r = brentq(f, a=0, b=1, args=alpha, full_output=True)
>>> x0
>>> 0.45375316586032827
>>> r

converged: True
flag: 'converged'

function_calls: 7
iterations: 6

root: 0.45375316586032827)
>>> x = np.linspace(0, 1, 400)
>>> plt.plot(x, f(x, alpha))
>>> plt.plot(x0, 0, 'o')
>>> plt.show()

As the output indicates, the root is found within 6 iterations. The resulting root is depicted in Figure
4.16 as an orange dot.

Finally, we consider a more complex example which involves optimization and the solution of a coupled
set of differential equations. The physical problem to be studied numerically is the fall of a chain where
the equations of motion are derived in W. Tomaszweski, P. Pieranski, and J.-C. Geminard, Am. J. Phys.
74, 776 (2006)9 and account for damping inside the chain. For the initial configuration of the chain, we
take a chain hanging in equilibrium where the two ends are at equal height and at a given horizontal
distance. In the continuum limit, the chain follows a catenary, but in the discrete case treated here,
we obtain the equilibrium configuration by optimizing the potential energy. This is done in the method
equilibrium of our Chain class. The method essentially consists of a call to the minimize function
taken from the optimize module of SciPy. It optimizes the potential energy defined in the f_energy
method. In addition, we have to account for two constraints corresponding to the horizontal and vertical
direction and implemented through the methods x_constraint and y_constraint. An example of the
result of this optimization procedure is depicted in Figure 4.17 for a chain made of 9 links.

import numpy as np
import numpy.linalg as LA

(continues on next page)

9 doi:10.1119/1.2204074.

4.3. SciPy 79

https://doi.org/10.1119/1.2204074

Tools for Scientific Computing, Release 0.3

(continued from previous page)

import matplotlib.pyplot as plt
from scipy.optimize import minimize
from scipy.integrate import solve_ivp

class Chain:
def __init__(self, nlinks, length, damping):

if nlinks < length:
raise ValueError('length requirement cannot be fulfilled with '

'the given number of links')
self.nlinks = nlinks
self.length = length
self.m = self.matrix_m()
self.a = self.vector_a()
self.damping = (-2*np.identity(self.nlinks, dtype=np.float64)

+np.eye(self.nlinks, k=1)
+np.eye(self.nlinks, k=-1))

self.damping[0, 0] = -1
self.damping[self.nlinks-1, self.nlinks-1] = -1
self.damping = damping*self.damping

def x_constraint(self, phi):
return np.sum(np.cos(phi))-self.length

def y_constraint(self, phi):
return np.sum(np.sin(phi))

def f_energy(self, phi):
return np.sum(np.arange(self.nlinks, 0, -1)*np.sin(phi))

def equilibrium(self):
result = minimize(self.f_energy, np.linspace(-0.1, 0.1, self.nlinks),

method='SLSQP',
constraints=[{'type': 'eq', 'fun': self.x_constraint},

{'type': 'eq', 'fun': self.y_constraint}])
return result.x

def plot_equilibrium(self):
phis = chain.equilibrium()
x = np.zeros(chain.nlinks+1)
x[1:] = np.cumsum(np.cos(phis))
y = np.zeros(chain.nlinks+1)
y[1:] = np.cumsum(np.sin(phis))
plt.plot(x, y)
plt.plot(x, y, 'o')
plt.axes().set_aspect('equal')
plt.show()

def matrix_m(self):
m = np.fromfunction(lambda i, j: self.nlinks-np.maximum(i, j)-0.5,

(self.nlinks, self.nlinks), dtype=np.float64)
m = m-np.identity(self.nlinks)/6
return m

def vector_a(self):
a = np.arange(self.nlinks, 0, -1)-0.5
return a

(continues on next page)

80 Chapter 4. Scientific computing with NumPy and SciPy

Tools for Scientific Computing, Release 0.3

Figure 4.17: Chain consisting of 9 links hanging in its equilibrium position with a horizontal distance of
the ends equivalent to the length of 7 links.

(continued from previous page)

def diff(self, t, y):
momenta = y[:self.nlinks]
angles = y[self.nlinks:]
d_angles = momenta
ci = np.cos(angles)
cij = np.cos(angles[:,np.newaxis]-angles)
sij = np.sin(angles[:,np.newaxis]-angles)
mcinv = LA.inv(self.m*cij)
d_momenta = -np.dot(self.m*sij, momenta*momenta)
d_momenta = d_momenta+np.dot(self.damping, momenta)
d_momenta = d_momenta-self.a*ci
d_momenta = np.dot(mcinv, d_momenta)
d = np.empty_like(y)
d[:self.nlinks] = d_momenta
d[self.nlinks:] = d_angles
return d

def solve_eq_of_motion(self, time_i, time_f, nt):
y0 = np.zeros(2*self.nlinks, dtype=np.float64)
y0[self.nlinks:] = self.equilibrium()
self.solution = solve_ivp(self.diff, (time_i, time_f), y0, method='Radau',

t_eval=np.linspace(time_i, time_f, nt))

def plot_dynamics(self):
for i in range(self.solution.y.shape[1]):

phis = self.solution.y[:, i][self.nlinks:]
x = np.zeros(self.nlinks+1)
x[1:] = np.cumsum(np.cos(phis))
y = np.zeros(self.nlinks+1)
y[1:] = np.cumsum(np.sin(phis))
plt.plot(x, y, 'b')

plt.axes().set_aspect('equal')
plt.show()

chain = Chain(200, 150, 0.003)
chain.solve_eq_of_motion(0, 40, 50)
chain.plot_dynamics()

In a second step, the equation of motion for the chain links is solved in the solve_eq_of_motion method
by means of solve_ivp taken from the integrate module of SciPy. We need to express the second
order equations of motion in terms of first-order differential equations which can always be achieved by
doubling the number of degrees of freedom by means of auxiliary variables. The main ingredient then is
the function called diff in our example which for a given set of variables returns the time derivatives
for these variables. Furthermore, solve_ivp needs to know the time interval on which the solution is
to be determined together with the time values for which a solution is requested as well as the initial
configuration. Finally, out of the various solvers, we choose Radau which implements an implicit Runge-

4.3. SciPy 81

Tools for Scientific Computing, Release 0.3

Figure 4.18: Stroboscopic image of a falling chain consisting of 200 elements starting out from its
equilibrium state in the upper right during its first half period swinging to the left.

Kutta method of Radau IIA family of order 5. Figure 4.18 displays a stroboscopic plot of the chain
during is first half period swinging from the right to the left.

82 Chapter 4. Scientific computing with NumPy and SciPy

CHAPTER 5

Run-time analysis

5.1 General remarks

Frequently, the numerical treatment of scientific problems can lead to time-consuming code and the ques-
tion arises how its performance can be improved. There exist a variety of different kinds of approaches.
One could for example choose to make use of more powerful hardware or distribute the task on numerous
compute nodes of a compute cluster. Even though today, human resources tend to be more costly than
hardware resource, the latter should not be wasted by very inefficient code.

In certain cases, speed can be improved by making use of graphical processors (GPU) which are able to
handle larger data sets in parallel. While writing code for GPUs may be cumbersome, there exists for
example the CuPy library1 which can serve as a drop-in replacement for most of the NumPy library and
will run on NVIDIA GPUs.

On the software side, an option is to make use of optimized code provided by numerical libraries like
NumPy and SciPy discussed in Section 4. Sometimes, it can make sense to implement particularly time-
consuming parts in the programming language C for which highly optimizing compilers are available.
This approach does not necessarily require to write proper C code. One can make use of Cython2 instead,
which will autogenerate C code from Python-like code.

Another option is the use of just in time (JIT) compilers as is done in PyPy3 and Numba4. The latter
is readily available through the Anaconda distribution and offers an easy approach to speeding up time-
critical parts of the code by simply adding a decorator to a function. Generally, JIT compilers analyze
the code before its first execution and create machine code allowing to run the code faster in subsequent
calls.

While some of the methods just mentioned can easily be implemented, others may require a significant
investment of time. One therefore needs to assess whether the gain in compute time really exceeds the
cost in developer time. It is worth following the advice of the eminent computer scientist Donald E.
Knuth5 who wrote already 45 years ago6

There is no doubt that the grail of efficiency leads to abuse. Programmers waste enormous
amounts of time thinking about, or worrying about, the speed of noncritical parts of their

1 For more information, see the CuPy homepage.
2 For more information, see Cython – C-Extensions for Python.
3 For more information, see the PyPy homepage.
4 For more information, see the Numba homepage.
5 Donald E. Knuth is well known far beyond the computer science community as the author of the typesetting system

TeX.
6 D.E. Knuth, Computing Surveys 6, 261 (1974). The quote can be found on page 268.

83

https://cupy.chainer.org
https://cython.org/
https://pypy.org
https://numpy.pydta.org

Tools for Scientific Computing, Release 0.3

programs, and these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about small efficiencies, say
about 97 % of the time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3 %. A good programmer will
not be lulled into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified.

Before beginning to optimize code, it is important to identify the parts where most of the time is spent
and the rest of this chapter will be devoted to techniques allowing to do so. At this point, it is worth
emphasizing that a piece of code executed relatively fast can be more relevant than a piece of code
executed slowly if the first one is executed very often while the second one is executed only once.

Code optimization often entails a risk for bugs to enter the code. Obviously, fast-running code is not
worth anything if it does not produce correct results. It can then be very reassuring if one can rely on
a comprehensive test suite (Section 3) and if one has made use of a version control system (Section 2)
during code development and code optimization.

Before discussing techniques for timing code execution, we will discuss a few potential pitfalls.

5.2 Some pitfalls in run-time analysis

A simple approach to performing a run-time analysis of code could consist in taking the time before and
after the code is executed. The time module in the Python standard library offers the possibility to
determine the current time:

>>> import time
>>> time.ctime()
'Thu Dec 27 11:13:33 2018'

While this result is nicely readable, it is not well suited to calculate time differences. For this purpose,
the seconds passed since the beginning of the epoch are better suited. On Unix systems, the epoch starts
on January, 1970 at 00:00:00 UTC:

>>> time.time()
1545905769.0189064

Now, it is straightforward to determine the time elapsed during the execution of a piece of code. The
following code repeats the execution several times to convey an idea of the fluctuations to be expected.

import time

for _ in range(10):
sum_of_ints = 0
start = time.time()
for n in range(1000000):

sum_of_ints = sum_of_ints + 1
end = time.time()
print(f'{end-start:5.3f}s', end=' ')

Executing this code yields:

0.142s 0.100s 0.093s 0.093s 0.093s 0.093s 0.092s 0.091s 0.091s 0.091s

Doing a second run on the same hardware, we obtained:

0.131s 0.095s 0.085s 0.085s 0.088s 0.085s 0.084s 0.085s 0.085s 0.085s

84 Chapter 5. Run-time analysis

Tools for Scientific Computing, Release 0.3

While these numbers give an idea of the execution time, they should not be taken too literally. In
particular, it makes sense to average over several loops. This is facilitated by the timeit module in the
Python standard library which we will discuss in the following section.

When performing run-time analysis as just described, one should be aware that a computer may be
occupied by other tasks as well. In general, the total elapsed time will thus differ from the time actually
needed to execute a specific piece of code. The time module therefore provides two functions. In
addition to the time function which records the wall clock time, there exist a process_time function
which counts the time attributed to the specific process running our Python script. The following
example demonstrates the difference by intentionally letting the program pause for a second once in a
while. Note, that although the execution of time.sleep occurs within the process under consideration,
the time needed is ignored by process_time. Therefore, we can use time.sleep to simulate other
activities of the computer, even if it is done in a somewhat inappropriate way.

import time

sum_of_ints = 0
start = time.time()
start_proc = time.process_time()
for n in range(10):

for m in range(100000):
sum_of_ints = sum_of_ints + 1

time.sleep(1)
end = time.time()
end_proc = time.process_time()
print(f'total time: {end-start:5.3f}s')
print(f'process time: {end_proc-start_proc:5.3f}s')

In a run on the same hardware as used before, we find the following result:

total time: 10.207s
process time: 0.197s

The difference basically consists of the ten seconds spent while the code was sleeping.

One should also be aware that enclosing the code in question in a function will lead to an additional
contribution to the execution time. This particularly poses a problem if the execution of the code itself
requires only little time. We compare the two scripts

import time

sum_of_ints = 0
start_proc = time.process_time()
for n in range(10000000):

sum_of_ints = sum_of_ints + 1
end_proc = time.process_time()
print(f'process time: {end_proc-start_proc:5.3f}s')

and

import time

def increment_by_one(x):
return x+1

sum_of_ints = 0
start_proc = time.process_time()
for n in range(10000000):

increment_by_one(sum_of_ints)
(continues on next page)

5.2. Some pitfalls in run-time analysis 85

Tools for Scientific Computing, Release 0.3

(continued from previous page)

end_proc = time.process_time()
print(f'process time: {end_proc-start_proc:5.3f}s')

Tht first script takes on average over 10 runs 0.9 seconds while the second script takes 1.1 seconds and
thus runs about 20% slower.

Independently of the methods used and even if one of the methods discussed later is employed, a run-time
analysis will always influence the execution of the code. The measured run time therefore will be larger
than without doing any timing. However, we should still be able to identify the parts of the code which
take most of the time.

A disadvantage of the methods discussed so far consists in the fact that they require a modification of the
code. Usually, it is desirable to avoid such modifications as much as possible. In the following sections,
we will present a few timing techniques which can be used according to the specific needs.

5.3 The timeit module

Short isolated pieces of code can conveniently be analyzed by functions provided by the timeit module.
By default, the average code execution time will be determined on the basis of one million of runs. As
a first example, let us determine the execution time for the evaluation of the square of 0.5:

>>> import timeit
>>> timeit.timeit('0.5**2')
0.02171438499863143

The result is given in seconds. In view of one million of code executions, we obtain an execution time of
22 nanoseconds. If we want to use an argument, we cannot define it in the outer scope:

>>> x = 0.5
>>> timeit.timeit('x**2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/anaconda3/lib/python3.6/timeit.py", line 233, in timeit

return Timer(stmt, setup, timer, globals).timeit(number)
File "/opt/anaconda3/lib/python3.6/timeit.py", line 178, in timeit
timing = self.inner(it, self.timer)

File "<timeit-src>", line 6, in inner
NameError: name 'x' is not defined

Instead, we can pass the global namespace through the globals argument:

>>> x = 0.5
>>> timeit.timeit('x**2', globals=globals())
0.103586286000791

As an alternative, one can explicitly assign the variable x in the second argument intended for setup
code. Its execution time is not taken into account:

>>> timeit.timeit('x**2', 'x=0.5')
0.08539198899961775

If we want to compare with the pow function of the math module, we have to add the import statement
to the setup code as well:

>>> timeit.timeit('math.pow(x, 2)', 'import math; x=0.5')
0.2346674630025518

86 Chapter 5. Run-time analysis

Tools for Scientific Computing, Release 0.3

Figure 5.1: Comparison of execution times of the sine functions taken from the NumPy package and
from the math module for a range of vector sizes.

A more complex example of the use of the timeit module compares the evaluation of a trigonometric
function by means of a NumPy universal function with the use of the corresponding function of the math
module:

import math
import timeit
import numpy as np
import matplotlib.pyplot as plt

def f_numpy(nmax):
x = np.linspace(0, np.pi, nmax)
result = np.sin(x)

def f_math(nmax):
dx = math.pi/(nmax-1)
result = [math.sin(n*dx) for n in range(nmax)]

x = []
y = []
for n in np.logspace(0.31, 6, 300):

nint = int(n)
t_numpy = timeit.timeit('f_numpy(nint)', number=10, globals=globals())
t_math = timeit.timeit("f_math(nint)", number=10, globals=globals())
x.append(nint)
y.append(t_math/t_numpy)

plt.rc('text', usetex=True)
plt.plot(x, y, 'o')
plt.xscale('log')
plt.xlabel('vector size', fontsize=20)
plt.ylabel(r'$t_\mathrm{math}/t_\mathrm{numpy}$', fontsize=20)
plt.show()

The result is displayed in Figure 5.1.

We close this section with two remarks. If one wants to assess the fluctuations of the measure execution
times, one can replace the timeit function by the repeat function:

>>> x = 0.5
>>> timeit.repeat('x**2', repeat=10, globals=globals())
[0.1035151930009306, 0.07390781700087246, 0.06162133299949346,

(continues on next page)

5.3. The timeit module 87

Tools for Scientific Computing, Release 0.3

Figure 5.2: Time evolution of the probability density of an initial Gaussian wave packet positioned at
the center of an infinite potential well. Brighter colors imply larger probability densities.

(continued from previous page)

0.05376200799946673, 0.05260805999932927, 0.05276966699966579,
0.05227632500100299, 0.052304120999906445, 0.0523306600007345,
0.05286436900132685]

For users of the IPython shell or the Jupyter notebook, the magics %timeit and %%timeit provide a
simple way to time the execution of a single line of code or a code cell, respectively. These magics choose
a reasonable number of repetitions to obtain good statistics within a reasonable amount of time.

5.4 The cProfile module

The timeit module discussed in the previous section is useful to determine the execution time of one-
liners or very short code segments. It is not very useful though to determine the compute-time intensive
parts of a bigger program. If the program is nicely modularized in functions and methods, the cProfile
module will be of help. It determines, how much time is spent in the individual functions and methods
and thereby gives valuable information about which parts will benefit from code optimization.

We consider as a specific example the quantum mechanical time evolution of a narrow Gaussian wave
packet initially localized at the center of an infinite potential well7. The initial state is decomposed
in the appropriately truncated eigenbasis of the potential well. Once the coefficients of the expansion
are known, it is straightforward to determine the state at any later time. The time evolution of the
probability density is shown in Figure 5.2.

This figure has been obtained by means of the following Python script called carpet.py.

1 from math import cos, exp, pi, sin, sqrt
2 from cmath import exp as cexp
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from matplotlib import cm
6

7 class InfiniteWell:
8 def __init__(self, psi0, width, nbase, nint):

(continues on next page)

7 For more details, see e.g. W. Kinzel, Bilder elementarer Quantenmechanik, Phys. Bl. 51, 1190 (1995) and I. Marzoli,
F. Saif, I. Bialynicki-Birula, O. M. Friesch, A. E. Kaplan, W. P. Schleich, Quantum carpets made simple, Acta Phys. Slov.
48, 323 (1998).

88 Chapter 5. Run-time analysis

https://doi.org/10.1002/phbl.19950511215
http://www.physics.sk/aps/pubs/1998/aps_1998_48_3_323.pdf

Tools for Scientific Computing, Release 0.3

(continued from previous page)

9 self.width = width
10 self.nbase = nbase
11 self.nint = nint
12 self.coeffs = self.get_coeffs(psi0)
13

14 def eigenfunction(self, n, x):
15 if n % 2:
16 return sqrt(2/self.width)*sin((n+1)*pi*x/self.width)
17 return sqrt(2/self.width)*cos((n+1)*pi*x/self.width)
18

19 def get_coeffs(self, psi):
20 coeffs = []
21 for n in range(self.nbase):
22 f = lambda x: psi(x)*self.eigenfunction(n, x)
23 c = trapezoidal(f, -0.5*self.width, 0.5*self.width, self.nint)
24 coeffs.append(c)
25 return coeffs
26

27 def psi(self, x, t):
28 psit = 0
29 for n, c in enumerate(self.coeffs):
30 psit = psit + c*cexp(-1j*(n+1)**2*t)*self.eigenfunction(n, x)
31 return psit
32

33 def trapezoidal(func, a, b, nint):
34 delta = (b-a)/nint
35 integral = 0.5*(func(a)+func(b))
36 for k in range(1, nint):
37 integral = integral+func(a+k*delta)
38 return delta*integral
39

40 def psi0(x):
41 sigma = 0.005
42 return exp(-x**2/(2*sigma))/(pi*sigma)**0.25
43

44 w = InfiniteWell(psi0=psi0, width=2, nbase=100, nint=1000)
45 x = np.linspace(-0.5*w.width, 0.5*w.width, 500)
46 ntmax = 1000
47 z = np.zeros((500, ntmax))
48 for n in range(ntmax):
49 t = 0.25*pi*n/(ntmax-1)
50 y = np.array([abs(w.psi(x, t))**2 for x in x])
51 z[:, n] = y
52 z = z/np.max(z)
53 plt.rc('text', usetex=True)
54 plt.imshow(z, cmap=cm.hot)
55 plt.xlabel('t', fontsize=20)
56 plt.ylabel('x', fontsize=20)
57 plt.show()

This code is by no means optimal. After all, we want to discuss strategies to find out where most of the
compute time is spent and what we can do to improve the situation. Before doing so, let us get a general
idea of how the code works.

The initial wave function is the Gaussian defined in the function psi0 in lines 40-42. Everything related
to the basis functions is collected in the class InfiniteWell. During the instantiation, we define the
initial wave function psi0, the total width of the well width, the number of basis states nbase, and

5.4. The cProfile module 89

Tools for Scientific Computing, Release 0.3

the number of integration points nint to be used when determining the coefficients. The expansion
coefficients of the initial state are determined in get_coeffs defined in lines 19-25 and called from line
12. The value of the eigenfunction corresponding to eigenvalue n at position x is obtained by means of
the method eigenfunction defined in line 14-17. The integration is carried out very simply according
to the trapezoidal rule as defined in function trapezoidal in lines 33-38. The wave function at a given
point x and a given time t is calculated by method psi defined in lines 27-31. The code from line 44 to
the end serves to calculate the time evolution and to render the image shown in Figure 5.2.

In this version of the code, we deliberately do not make use of NumPy except to obtain the image. Of
course, NumPy would provide a significant speedup right away and one would probably never write the
code in the way shown here. But it provides a good starting point to learn about run-time analysis.
Where does the code spend most of its time?

To address this question, we make use of the cProfile module contained in the Python standard library.
Among the various ways of using this module, we choose one which avoids having to change our script:

% python -m cProfile -o carpet.prof carpet.py

This command runs the script carpet.py under the control of the cProfile module. The option -o
carpet.prof indicates that the results of this profiling run are stored in the file carpet.prof. This
binary file allows to analyze the obtained data in various ways by means of the pstats module. Let us
try it out:

>>> import pstats
>>> p = pstats.Stats('carpet.prof')
>>> p.sort_stats('time').print_stats(15)
Tue Jan 22 17:04:46 2019 carpet.prof

202073424 function calls (202065686 primitive calls) in 633.175 seconds

Ordered by: internal time
List reduced from 3684 to 15 due to restriction <15>

ncalls tottime percall cumtime percall filename:lineno(function)
50100100 232.867 0.000 354.468 0.000 carpet.py:14(eigenfunction)
500000 184.931 0.000 623.191 0.001 carpet.py:27(psi)

50000000 84.417 0.000 84.417 0.000 {built-in method cmath.exp}
50100101 55.301 0.000 55.301 0.000 {built-in method math.sqrt}
25050064 33.170 0.000 33.170 0.000 {built-in method math.cos}
25050064 33.129 0.000 33.129 0.000 {built-in method math.sin}

1 3.326 3.326 4.341 4.341 {built-in method exec_}
1000 1.878 0.002 625.763 0.626 carpet.py:50(<listcomp>)

503528 0.699 0.000 0.699 0.000 {built-in method builtins.abs}
1430 0.372 0.000 0.372 0.000 {method 'read' of '_io.BufferedReader'␣

→˓objects}
100100 0.348 0.000 1.386 0.000 carpet.py:22(<lambda>)

2 0.300 0.150 0.300 0.150 {built-in method statusBar}
100100 0.294 0.000 0.413 0.000 carpet.py:40(psi0)

100 0.154 0.002 1.540 0.015 carpet.py:33(trapezoidal)
100101 0.119 0.000 0.119 0.000 {built-in method math.exp}

After having imported the pstats module, we load our profiling file carpet.prof to obtain a statistics
object p. The data can then be sorted with the sort_stats method according to different criteria. Here,
we have chosen the time spent in a function. Since the list is potentially very long, we have restricted
the output to 15 entries by means of the print_stats method.

Let us take a look at the information provided by the run-time statistics. Each line corresponds to one of
the 15 most time-consuming functions and methods out of a total of 3695. The total time of about 667
seconds is mostly spent in the function psi listed in the second line. There are actually two times given
here. The total time (tottime) of 196 seconds counts only the time actually spent inside the function.

90 Chapter 5. Run-time analysis

Tools for Scientific Computing, Release 0.3

The time required to execute functions called from psi are not counted. In contrast, these times count
towards the cumulative time (cumtime). An important part of the difference can be explained by the
evaluation of the eigenfunctions as listed in the first line.

Since we have sorted according to time, which actually corresponds to tottime, the first line lists the
method consuming most of the time. Even though the time needed per call is so small that it is given as
0.000 seconds, this function is called very often. In the column ncalls the corresponding value is listed
as 50100100. In such a situation, it makes sense to check whether this number can be understood.

In a first step, the expansion coefficients need to be determined. We use 100 basis functions as specified
by nbase and 1001 nodes which is one more than the value of nint. This results in a total of 100100
evaluations of eigenfunctions, actually less than a percent of the total number of evaluations of eigen-
functions. In order to determine the data displayed in Figure 5.2, we evaluate 100 eigenfunctions on a
grid of size 500×1000, resulting in a total of 50000000 evaluations.

These considerations show that we do not need to bother with improving the code determining the
expansion coefficients. However, the situation might be quite different if we would not want to calculate
data for a relatively large grid. Thinking a bit more about it, we realize that the number of 50000000
evaluations for the time evolution is much too big. After all, we are evaluating the eigenfunctions at 500
different positions and we are considering 100 eigenfunctions, resulting in only 50000 evaluations. For
each of the 1000 time values, we are unnecessarily recalculating eigenfunctions for the same arguments.
Avoiding this waste of compute time could speed up our script significantly.

There are basically two ways to do so. We could restructure our program in such a way that we evaluate
the grid for constant position along the time direction. Then, we just need to keep the values of the
100 eigenfunctions at a given position. If we want to have the freedom to evaluate the wave function
at a given position and time on a certain grid, we could also store the values of all eigenfunctions at
all positions on the grid in a cache for later reuse. This is an example of trading compute time against
memory. We will implement the latter idea in the next version of our script listed below.8

1 from math import cos, exp, pi, sin, sqrt
2 from cmath import exp as cexp
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from matplotlib import cm
6

7 class InfiniteWell:
8 def __init__(self, psi0, width, nbase, nint):
9 self.width = width

10 self.nbase = nbase
11 self.nint = nint
12 self.coeffs = self.get_coeffs(psi0)
13 self.eigenfunction_cache = {}
14

15 def eigenfunction(self, n, x):
16 if n % 2:
17 return sqrt(2/self.width)*sin((n+1)*pi*x/self.width)
18 return sqrt(2/self.width)*cos((n+1)*pi*x/self.width)
19

20 def get_coeffs(self, psi):
21 coeffs = []
22 for n in range(self.nbase):
23 f = lambda x: psi(x)*self.eigenfunction(n, x)
24 c = trapezoidal(f, -0.5*self.width, 0.5*self.width, self.nint)
25 coeffs.append(c)
26 return coeffs

(continues on next page)

8 An alternative approach to caching would consist in using the functools.lru_cache decorator. However, in our specific
case it turns out that the overhead introduced by the lru_cache has a significant impact on the performance. The situation
might be different if it is more time consuming to obtain the results to be cached.

5.4. The cProfile module 91

Tools for Scientific Computing, Release 0.3

(continued from previous page)

27

28 def psi(self, x, t):
29 if not x in self.eigenfunction_cache:
30 self.eigenfunction_cache[x] = [self.eigenfunction(n, x)
31 for n in range(self.nbase)]
32 psit = 0
33 for n, (c, ef) in enumerate(zip(self.coeffs, self.eigenfunction_cache[x])):
34 psit = psit + c*ef*cexp(-1j*(n+1)**2*t)
35 return psit
36

37 def trapezoidal(func, a, b, nint):
38 delta = (b-a)/nint
39 integral = 0.5*(func(a)+func(b))
40 for k in range(1, nint):
41 integral = integral+func(a+k*delta)
42 return delta*integral
43

44 def psi0(x):
45 sigma = 0.005
46 return exp(-x**2/(2*sigma))/(pi*sigma)**0.25
47

48 w = InfiniteWell(psi0=psi0, width=2, nbase=100, nint=1000)
49 x = np.linspace(-0.5*w.width, 0.5*w.width, 500)
50 ntmax = 1000
51 z = np.zeros((500, ntmax))
52 for n in range(ntmax):
53 t = 0.25*pi*n/(ntmax-1)
54 y = np.array([abs(w.psi(x, t))**2 for x in x])
55 z[:, n] = y
56 z = z/np.max(z)
57 plt.rc('text', usetex=True)
58 plt.imshow(z, cmap=cm.hot)
59 plt.xlabel('t', fontsize=20)
60 plt.ylabel('x', fontsize=20)
61 plt.show()

Now, we check in method psi whether the eigenfunction cache already contains data for a given position
x. If this is not the case, the required values are calculated and the cache is updated.

As a result of this modification of the code, the profiling data change considerably:

Tue Jan 22 17:10:33 2019 carpet.prof

52205250 function calls (52197669 primitive calls) in 185.581 seconds

Ordered by: internal time
List reduced from 3670 to 15 due to restriction <15>

ncalls tottime percall cumtime percall filename:lineno(function)
500000 97.612 0.000 177.453 0.000 carpet.py:28(psi)

50000000 79.415 0.000 79.415 0.000 {built-in method cmath.exp}
1000 2.162 0.002 180.342 0.180 carpet.py:54(<listcomp>)

1 1.176 1.176 2.028 2.028 {built-in method exec_}
503528 0.732 0.000 0.732 0.000 {built-in method builtins.abs}
150100 0.596 0.000 0.954 0.000 carpet.py:15(eigenfunction)
100100 0.353 0.000 1.349 0.000 carpet.py:23(<lambda>)
1430 0.323 0.000 0.323 0.000 {method 'read' of '_io.BufferedReader'␣

→˓objects} (continues on next page)

92 Chapter 5. Run-time analysis

Tools for Scientific Computing, Release 0.3

(continued from previous page)

2 0.301 0.151 0.301 0.151 {built-in method statusBar}
100100 0.278 0.000 0.396 0.000 carpet.py:44(psi0)
150101 0.171 0.000 0.171 0.000 {built-in method math.sqrt}

100 0.140 0.001 1.489 0.015 carpet.py:37(trapezoidal)
100101 0.119 0.000 0.119 0.000 {built-in method math.exp}
75064 0.095 0.000 0.095 0.000 {built-in method math.sin}
75064 0.093 0.000 0.093 0.000 {built-in method math.cos}

We observe a speed-up of a factor of 3.6 by investing about 500×100×8 bytes of memory, i.e. roughly
400 kB. The exact value will be slightly different because we have stored the data in a dictionary and
not in an array, but clearly we are not talking about a huge amount of memory. The time needed to
evaluate the eigenfunctions has dropped so much that it can be neglected compared to the time required
by the method psi and the evaluation of the complex exponential function.

The compute could be reduced further by caching the values of the complex exponential functions. In
fact, we unnecessarily recalculate each value 500 times. However, there are still almost 96 seconds left
which are spent in the rest of the psi method. We will see in the following section how one can find out
which line of the code is responsible for this important contribution to the total run time.

Before doing so, we want to present a version of the code designed to profit from NumPy from the very
beginning

from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

class InfiniteWell:
def __init__(self, psi0, width, nbase, nint):

self.width = width
self.nbase = nbase
self.nint = nint
self.coeffs = trapezoidal(lambda x: psi0(x)*self.eigenfunction(x),

-0.5*self.width, 0.5*self.width, self.nint)

def eigenfunction(self, x):
assert x.ndim == 1
normalization = sqrt(2/self.width)
args = (np.arange(self.nbase)[:, np.newaxis]+1)*np.pi*x/self.width
result = np.empty((self.nbase, x.size))
result[0::2, :] = normalization*np.cos(args[0::2])
result[1::2, :] = normalization*np.sin(args[1::2])
return result

def psi(self, x, t):
coeffs = self.coeffs[:, np.newaxis]
eigenvals = np.arange(self.nbase)[:, np.newaxis]
tvals = t[:, np.newaxis, np.newaxis]
psit = np.sum(coeffs * self.eigenfunction(x)

* np.exp(-1j*(eigenvals+1)**2*tvals), axis= -2)
return psit

def trapezoidal(func, a, b, nint):
delta = (b-a)/nint
x = np.linspace(a, b, nint+1)
integrand = func(x)
integrand[..., 0] = 0.5*integrand[..., 0]

(continues on next page)

5.4. The cProfile module 93

Tools for Scientific Computing, Release 0.3

(continued from previous page)

integrand[..., -1] = 0.5*integrand[..., -1]
return delta*np.sum(integrand, axis=-1)

def psi0(x):
sigma = 0.005
return np.exp(-x**2/(2*sigma))/(np.pi*sigma)**0.25

w = InfiniteWell(psi0=psi0, width=2, nbase=100, nint=1000)
x = np.linspace(-0.5*w.width, 0.5*w.width, 500)
t = np.linspace(0, np.pi/4, 1000)
z = np.abs(w.psi(x, t))**2
z = z/np.max(z)
plt.rc('text', usetex=True)
plt.imshow(z.T, cmap=cm.hot)
plt.xlabel('t', fontsize=20)
plt.ylabel('x', fontsize=20)
plt.show()

The structure of the code is essentially unchanged, but we are making use of universal functions in several
places. In the method psi, a three-dimensional array is used with axis 0 to 2 given by time, eigenvalue,
and position. A run-time analysis yields the following result:

Tue Jan 22 17:12:41 2019 carpet.prof

457912 function calls (450291 primitive calls) in 4.644 seconds

Ordered by: internal time
List reduced from 3682 to 15 due to restriction <15>

ncalls tottime percall cumtime percall filename:lineno(function)
1 1.707 1.707 2.543 2.543 {built-in method exec_}
1 0.410 0.410 0.481 0.481 carpet.py:23(psi)

1430 0.284 0.000 0.284 0.000 {method 'read' of '_io.BufferedReader'␣
→˓objects}

2 0.276 0.138 0.276 0.138 {built-in method statusBar}
407 0.074 0.000 0.074 0.000 {method 'reduce' of 'numpy.ufunc'␣

→˓objects}
48/46 0.056 0.001 0.061 0.001 {built-in method _imp.create_dynamic}
35469 0.049 0.000 0.053 0.000 {built-in method builtins.isinstance}
284 0.048 0.000 0.048 0.000 {built-in method marshal.loads}
1 0.039 0.039 0.040 0.040 {built-in method show}
2 0.036 0.018 0.210 0.105 /opt/anaconda3/lib/python3.7/site-

→˓packages/matplotlib/font_manager.py:1198(_findfont_cached)
418/185 0.028 0.000 0.099 0.001 /opt/anaconda3/lib/python3.7/sre_parse.

→˓py:475(_parse)
23838 0.028 0.000 0.028 0.000 {method 'lower' of 'str' objects}

63 0.027 0.000 0.027 0.000 {built-in method io.open}
21637 0.025 0.000 0.025 0.000 {method 'startswith' of 'str' objects}

1169/1101 0.025 0.000 0.200 0.000 {built-in method builtins.__build_class_
→˓_}

Since the run time obtained by profiling is longer than the actual run time, we have measured the latter
for the first version of the script and the NumPy version, resulting in an speed up by a factor of 90. Even
though this improvement is impressive, the code given above could be improved even further. However,
as this is not the main purpose of the chapter, we rather turn our attention to how one can do profiling
on a line-by-line basis.

94 Chapter 5. Run-time analysis

Tools for Scientific Computing, Release 0.3

5.5 Line oriented run-time analysis

In the second version of the script discussed in the previous section, we had seen that by far most of
the time was spent in the method psi. Almost half of the time was spent in the complex exponential
function so that a significant amount of time must be spent elsewhere in the function. At this point, the
cProfile module is not of much help as it only works on the function level.

Fortunately, there is a line profiling tool available. However, it is not part of the Anaconda distribu-
tion and needs to be installed separately. The package is called line_profiler and can be found on
the Python package index (PyPI). It can be installed either into a virtual environment or in a conda
environment.

Line profiling adds some overhead to the code execution and it makes sense to limit it to the most
important function or a few of them. This can easily be done by decorating the function in question
with @profile. Since we know that the psi method constitutes the bottleneck of our calculation, we
only decorate that method. Running the line profiler on our script called carpet.py is done by9:

$ kernprof -l -v carpet.py

Here, the option -l requests the line-by-line profiler and -v allows to immediately view the results in
addition to storing them in a file with extension lprof. We obtain the following result:

Wrote profile results to carpet.py.lprof
Timer unit: 1e-06 s

Total time: 306.266 s
File: carpet.py
Function: psi at line 27

Line # Hits Time Per Hit % Time Line Contents
==

27 @profile
28 def psi(self, x, t):
29 500000 1171076.0 2.3 0.4 if not self.coeffs:
30 1 348711.0 348711.0 0.1 self.get_coeffs(psi0)
31 500000 1435067.0 2.9 0.5 if not x in self.

→˓eigenfunction_cache:
32 500 1256.0 2.5 0.0 self.eigenfunction_

→˓cache[x] = [self.eigenfunction(n, x)
33 500 105208.0 210.4 0.0 ␣

→˓ for n in range(self.nbase)]
34 500000 1190160.0 2.4 0.4 psit = 0
35 50500000 132196091.0 2.6 43.2 for n, (c, ef) in␣

→˓enumerate(zip(self.coeffs, self.eigenfunction_cache[x])):
36 50000000 168606042.0 3.4 55.1 psit = psit + c*ef*cexp(-

→˓1j*(n+1)**2*t)
37 500000 1212643.0 2.4 0.4 return psit

The timing information only refers to the function on which the line profiler is run. We can see here
that the for loop is responsible for a significant portion of the execution time. Making use of NumPy
arrays can improve the performance of the code dramatically as we have seen at the end of the previous
section.

By using the option -v, we were able to immediately see the result of the profiling run. In addition, a file
carpet.py.lprof has been created. It is possible to obtain the profiling result from it later by means
of:

9 The command name kernprof makes reference to the author of the package Robert Kern.

5.5. Line oriented run-time analysis 95

https://pypi.org/

Tools for Scientific Computing, Release 0.3

python -m line_profiler carpet.py.lprof

96 Chapter 5. Run-time analysis

CHAPTER 6

Documentation of code

Besides writing code and testing it, documenting the code is also an important task which should not be
neglected. In Python, it is a good habit to provide each function or method with a docstring which might
even contain doctests as we have discussed in Section 3.2. For more complex programs, modules or even
packages, it will not be sufficient to limit the documentation to the doctests. This chapter will be devoted
to the discussion of the documentation tool Sphinx which is commonly employed to document Python
project but which can be used also to document projects written in other programming languages. Even
the present lecture notes are making use of Sphinx.

Sphinx is based on the markup language reStructuredText. Due to its unobtrusive syntax the original text
can easily be read. At the same time, the markup is powerful enough to produce nicely laid out output
in different formats, in particular in HTML and LaTeX. The latter can directly be used to produce the
documentation in PDF format.

The value of Sphinx for the documentation of software projects relies to a large extent on its capability
to make use of docstrings for inclusion in the documentation. Sphinx thus provides another good reason
to supply functions and methods with docstrings.

In the following, we will first give an introduction to the markup language reStructuredText and then
explain some of the more important aspects of how Sphinx can be used to document code. For further
information, we refer to the documentation of reStructuredText1 and Sphinx2.

6.1 Markup with reStructuredText

Markup languages are used to annotate text for electronic text processing, for example in order to
specify its meaning. A text could be marked as representing a section title and a computer program
could then represent it accordingly, e.g. as larger text set in boldface. A widespread markup language is
the HyperText Markup Language HTML used for markup of webpages. A pair of tags and
would indicate in HTML that the enclosed text represents an item in a list. An example of a markup
language commonly found in a scientific context is LaTeX. Here, x and x will be typeset differently
because the dollar signs in the second case indicate that the character x is meant to be a mathematical
variable which usually is typeset in an italic font.

1 More information on reStructuredText can be found in the documentation of the docutils project at http://docutils.
sourceforge.net/rst.html.

2 The Sphinx project page can be found at https://www.sphinx-doc.org/.

97

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
https://www.sphinx-doc.org/

Tools for Scientific Computing, Release 0.3

The markup in HTML and LaTeX helps computer programs to interpret the meaning of the text and
to represent it correctly. However, text written in these markup languages often lacks a good human
readability. This is particularly true for the very flexible extensible markup language XML.

On the other hand, there exist so-called lightweight markup languages like reStructuredText or Markdown
where the latter may come in different variants. These markup languages are designed in such a way
that the meaning of the markup appears rather natural to a human reader. From the following example
written in reStructuredText

Markup of lists
===============

The following is a bullet-point list:

* first item
* second item

it is pretty clear that the first two lines represent a header title and the last two lines represent a
list. Due to the simplicity of its markup, Markdown or one of its variants is commonly used in Wikis.
Both, texts written in Markdown or in reStructuredText are frequently used for documentation files in
software projects like README.md or README.rst, respectively, which usually specify the purpose
of the software and give further useful information. In version control systems like Gitlab, they can be
represented in a nice form in the browser.

The documentation generator Sphinx is based on reStructuredText. Therefore, we will now discuss some
of the more important aspects of this markup language.

Within a text, parts can be emphasized or even strongly emphasized by enclosing them in one or two
stars, respectively. Inline literals are enclosed in a pairs of back-quotes. It is important that these
constructs should be delimited by characters which could also be used otherwise to delimit words like a
whitespace or a punctuation character. If a whitespace is used but should not appear in the output, it
needs to be escaped by means of a backslash. The text to which the markup is applied may not start or
end with a whitespace. The following example provides an illustration.

Text can be *emphasized*, usually as italics, or even **strongly emphasized**,
usually as boldface. It is also possible to insert ``inline literals`` which
will usually be represented as monospaced text.

This is another paragraph showing how to embed an inline literal while
suppressing the surrounding blanks: re\ ``structured``\ Text.

will be represented as3

Text can be emphasized, usually as italics, or even strongly emphasized, usually as bold-
face. It is also possible to insert inline literals which will usually be represented as
monospaced text.

This is another paragraph showing how to embed an inline literal while suppressing the
surrounding blanks: restructuredText.

This example also shows that paragraphs are separated by a blank line. On a higher level, text is
sectioned into parts, chapters, sections etc. A hierarchy is established by adorning titles in a systematic
way. To this end, an underline or an underline together with an overline is added to the corresponding
title. An underline or overline is at least as long as the title and contains only identical non-alphanumeric
printable ASCII characters. It is recommended to choose among the characters = - ` : . ' " ~ ^ _
* + #. Note that even though in this way one can define a large number of different sectioning levels, in
practice this number may be limited. For example, in HTML the number of different headings is limited
to six. An example of sectioning of a text could look as follows:

3 Note that the representation given here and in following examples is generated by the LaTeX builder of Sphinx. It
may look differently if the representation is generated otherwise, e.g. with tools like rst2html or rst2latex provided by
docutils or rst2pdf.

98 Chapter 6. Documentation of code

Tools for Scientific Computing, Release 0.3

============
Introduction
============

A first section
===============

Here comes some text ...

A second section
================
More text...

A subsection

And so on...

As this example indicates, an empty line can be put after a title but this is not mandatory.

Lists, either as bullet-point lists or as enumerated lists, can easily be obtained in reStructuredText. In
a bullet-point list, the items are indicated by a few characters including * + - •. If the text if an item
runs over several lines, it needs to be consistently indented. Sublists need to be separated from the
surrounding list by empty lines. The following example illustrates the use of bullet-point lists:

* This is the text for the first item which runs over several lines. Make
sure that the text is consistently indented.

Further paragraphs in an item can be added provided the indentation
is consistent.

* second item

* a subitem

* third item

This code results in

• This is the text for the first item which runs over several lines. Make sure that the text is consistently
indented.

Further paragraphs in an item can be added provided the indentation is consistent.

• second item

– A subitem is obtained by indenting the corresponding entry.

• third item

An enumerated list can be numbered explicitly by numbers, alphabet characters in uppercase or lower-
case, or Roman numerals. It is also possible to autonumber a list by means of #. The sublist of the second
item demonstrates two aspects. The first subitem specifies that lowercase letters should be used for enu-
meration and, in addition, the sublist should start with a letter other than “a”. Once autonumbering
has started, fixing a subsequent label would lead to the start of a new list.

The following code

#. first item with automatic numbering
#. second item

p. subitem
#. another subitem

(continues on next page)

6.1. Markup with reStructuredText 99

Tools for Scientific Computing, Release 0.3

(continued from previous page)

#. another item

results in

1. first item with automatic numbering

2. second item

p. subitem

q. another subitem

3. another item

We have already seen how to produce inline literals which may be useful to mark for example keywords.
To display multiline code, the code directive is appropriate. The following example makes use of the
possibility to add linenumbers.

.. code:: python

nmax = 10
sum = 0
for n in range(1, nmax+1):

sum = sum+n**2
print(nmax, sum)

Since it is indicated that the code is written in Python, the syntax of the code can be highlighted.

nmax = 10
sum = 0
for n in range(1, nmax+1):

sum = sum+n**2
print(nmax, sum)

Another possibility to typeset code is the use of two colons. If the colons follow the preceding text
immediately, a single colon will be displayed at the end of the text:

The following script displays "hello world" three times::

for _ in range(3):
print('Hello world!')

Note the indentation of the code block which indicates which part of the text should be considered as
code. The output is as follows:

The following script displays “hello world” three times:

for _ in range(3):
print('Hello world!')

The colon in the output can be avoided if the colons are separated from the text by a blank:

The following script displays "hello world" three times. ::

for _ in range(3):
print('Hello world!')

Now, the output looks as follows:

The following script displays “hello world” three times.

100 Chapter 6. Documentation of code

Tools for Scientific Computing, Release 0.3

Figure 6.1: A graphics can be distorted by specifying height and width.

for _ in range(3):
print('Hello world!')

For scientific applications, one might want to include mathematical expressions. This can be done by
means of the math role (:math:) for inline mathematical expressions and the math directive (math::)
for displayed mathematical expressions. In both cases, the mathematical expression is entered in LaTeX
format. The following code

Einstein found the famous formula :math:`E=mc^2` which describes the
equivalence of energy and mass.

.. math::

\int_{-\infty}^\infty \mathrm{d}x \mathrm{e}^{-x^2} = \sqrt{\pi}

will result in the output:

Einstein found the famous formula 𝐸 = 𝑚𝑐2 which describes the equivalence of energy and
mass. ∫︁ ∞

−∞
d𝑥e−𝑥2

=
√
𝜋

There exists also a directive to include images:

.. image:: img/example.png
:width: 100
:height: 100
:align: center

The name of the image file to be included needs to be specified. Here, the file happens to reside in a
subdirectory img of the present directory. We have also specified the size and the alignment of the figure,
resulting in the following output:

The figure directive can be used to add a figure caption. The caption text needs to be indented to
indicate that it belongs to the figure directive.

.. figure:: img/example.png
:height: 50
:width: 100

A graphics can be distorted by specifying ``height`` and ``width``.

This code results in Figure 6.1, which by means of the Sphinx LaTeX builder is created as a floating
object.

6.1. Markup with reStructuredText 101

Tools for Scientific Computing, Release 0.3

Occasionally, one may want to include a link to a web resource. In a documentation, this might be
desirable to refer to a publication where an algorithm or the theoretical basis of the code has been
described. As an example, we present various ways to link to the seminal paper by Cooley and Tukey
on the fast Fourier transformation. The numbering allows us to refer more easily to the three different
versions and plays no role with respect to the links.

#. J. W. Cooley and J. W. Tukey, *An algorithm for the machine calculation
of complex Fourier series*,
`Math. Comput. 19, 297–301 (1965) <https://doi.org/10.2307/2003354>`_

#. J. W. Cooley and J. W. Tukey, *An algorithm for the machine calculation
of complex Fourier series*,
Math. Comput. **19**, 297–301 (1965) `<https://doi.org/10.2307/2003354>`_

#. J. W. Cooley and J. W. Tukey, *An algorithm for the machine calculation
of complex Fourier series*,
Math. Comput. **19**, 297–301 (1965) https://doi.org/10.2307/2003354

results in the output

1. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series,
Math. Comput. 19, 297–301 (1965)

2. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series,
Math. Comput. 19, 297–301 (1965) https://doi.org/10.2307/2003354

3. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series,
Math. Comput. 19, 297–301 (1965) https://doi.org/10.2307/2003354

The first case represents the most comprehensive way to represent a link. The pair of back apostrophes
encloses the text and the link delimited by a less-than and greater-than sign. The text will be shown
in the output with the link associated with it. The underscore at the very end indicates that this is an
outgoing link. In contrast to the two other variants, the volume number (19) can be set as boldface as
nesting of the markup is not possible.

The second alternative explicitly displays the URL since no text is given. The same effect is obtained in
the third variant by simply putting a URL which can be recognized as such.

In addition to external links, reStructuredText also allows to create internal links. An example are
footnotes like in the following example.

This is some text. [#myfootnote]_ And more text...

.. [#myfootnote] Some remarks.

It is also possible to refer to titles of chapters or sections. The following example gives an illustration.

Introduction
============

This is an introductory chapter.

Chapter 1
=========

As discussed in the `Introduction`_ ...

Here, the text of the link has to agree with the text of the chapter or section.

The discussion of reStructuredText in this section did not attempt to cover all possibilities provided by
this markup language. For more details, it is recommended to consult the documentation.

102 Chapter 6. Documentation of code

https://doi.org/10.2307/2003354
https://doi.org/10.2307/2003354
https://doi.org/10.2307/2003354
http://docutils.sourceforge.net/rst.html

Tools for Scientific Computing, Release 0.3

6.2 Sphinx documentation generator

The Sphinx documentation generator was initially created to produce the documentation for Python.
However, it is very flexible and can be employed for many other use cases. In fact, the present lecture
notes were also generated by means of Sphinx. As a documentation generator, Sphinx accepts docu-
ments written in reStructuredText including a number of extension and provides builders to convert
the input into a variety of output formats, among them HTML and PDF, where the latter is obtained
through LaTeX as an intermediate format. Sphinx offers the interesting possibility to autogenerate the
documentation or part of it on the basis of the docstrings provided by the code being documented.

6.2.1 Setting up a Sphinx project

There is not a unique way to set up a Sphinx documentation project. For a unexperienced user of Sphinx,
the probably simplest way is to invoke4

$ sphinx-quickstart

Remember that the dollar sign represents the command line prompt and should not be typed. The user
will then be asked a number of questions and the answers will allow Sphinx to create the basic setup.
For the documentation of a software project, it makes sense to store all documentation related material
in a subdirectory doc. Then, sphinx-quickstart should either be run in this directory or the path to
this directory should be given as an argument.

The dialog starts with a question about where to place the build directory relative to the source di-
rectory. The latter would for example be the directory doc and typically contains a configuration file,
reStructuredText files, and possibly images. For a larger documentation, these files can be organized in
a subdirectory structure. These source files will usually be put under version control. When creating the
documentation in an output format, Sphinx puts intermediate files and the output in a special directory
to avoid mixing these files with the source files. There are two ways to do so. A directory named build
can be put in parallel to the doc directory or the it can be kept within the doc directory. Then it will
be called _build where the underscore indicates its special role. It is not necessary to rerun sphinx-
quickstart if you change your mind. One can instead modify the file Makefile and/or make.bat which
will be discussed below. It may be useful to add the build directory to the .gitignore file, provided a
Git repository is used.

Sphinx now asks the user to choose between the two alternatives. (y/n) in the last line indicates the
possible valid answers. [n] indicates the default value which can also be chosen by simply hitting the
return key. Per default, Sphinx thus chooses to place build files into a directory _build within the source
directory.

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]:

Often, it makes sense to follow the recommendations of Sphinx. Two pieces of information are however
mandatory: the name of the project and the author name(s). The default language is English, but for
example by choosing de it can be switched to German. This information is relevant when converting to
LaTeX in order to choose the correct hyphenation patterns.

sphinx-quickstart offers also to enable a number of extensions. It is possible to change one’s mind
later by adapting the configuration file conf.py.

> autodoc: automatically insert docstrings from modules (y/n) [n]:
> doctest: automatically test code snippets in doctest blocks (y/n) [n]:
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]:

(continues on next page)

4 The following discussion is based on version 1.8.2 of Sphinx but should mostly apply to all recent versions of Sphinx.

6.2. Sphinx documentation generator 103

Tools for Scientific Computing, Release 0.3

(continued from previous page)

> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]:
> coverage: checks for documentation coverage (y/n) [n]:
> imgmath: include math, rendered as PNG or SVG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]:
> viewcode: include links to the source code of documented Python objects (y/n) [n]:
> githubpages: create .nojekyll file to publish the document on GitHub pages (y/n)␣
→˓[n]:

We briefly comment on a few of the more important extensions. autodoc should be enabled if one wants
to generate documentation from the docstrings provided in the code being documented by the Sphinx
project. intersphinx is useful if one wants to provide links to other projects. It is for example possible
to refer to the NumPy documentation. MathJax is a Javascript package5 which allows for high-quality
typesetting of mathematical material in HTML.

Depending on the operating system(s) on which output is generated for the Sphinx project, one typically
chooses either the Makefile for Un*x operating systems or a Windows command file for Windows
operating systems or even both if more than one operating system is being used.

> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]:

While the conversion to an output format can always be done by means of sphinx-build, the task is
facilitated by a Makefile or command file. On a Un*x system, running one of the commands

$ make html
$ make latexpdf

in the directory where the Makefile resides is sufficient to obtain HTML output of PDF output, respec-
tively.

Accepting the default values proposed by Sphinx, the content of the source directory on a Un*x system
will typically look as follows:

doc
+-- _build
+-- _static
+-- _templates
+-- conf.py
+-- index.rst
+-- Makefile

As is indicated by the extension, conf.py is a Python file which defines the configuration of the Sphinx
project. This file can be modified according to the user’s need as long as the Python syntax is respected.
index.rst is the main source file from which reference to other reStructuredText files can be made.
Finally, Makefile defines what should be done when invoking make with one of the targets html or
latexpdf or any other valid target specified by make help.

6.2.2 Sphinx configuration

As already mentioned, the file conf.py offers the possibility to adapt Sphinx to the needs of the project.
Basic information includes the name of the project and of the author(s) as well as copyright information
and version numbers. It makes sense to create a corresponding version tag in the project repository.

We have seen that sphinx-quickstart proposes the use of a number of extensions which, if selected, will
appear in the list extensions. Here, other extensions may be added. When generating documentation

5 For more information see https://www.mathjax.org/.

104 Chapter 6. Documentation of code

https://www.mathjax.org/

Tools for Scientific Computing, Release 0.3

from docstrings, the napoleon extensions is of particular interest. Its usefulness will be discussed in
Section 6.2.3. This extension can be enabled by adding sphinx.ext.napoleon to the list of extensions.

The configuration file contains section for different output builders. We restrict ourselves here to HTML
output and LaTeX output which can serve to produce a PDF document. Among the options for the
HTML output, probably the most interesting variable is html_theme. https://www.sphinx-doc.org/en/
stable/theming.html lists a few builtin themes which represent a simple way to change the look and feel
of the HTML output. Third-party themes can be found at https://sphinx-themes.org/ and there is also
the possibility to create one’s own customized theme.

If the LaTeX output needs to be customized, the dictionary latex_elements is the place to look for.
The configuration file created by sphinx-quickstart provides a structure which is commented out, but
might be useful if one needs to customize certain aspects. For example, if one wants to typeset for
A4 paper and would like to have floats preferentially placed on the top of the page, one might set the
dictionary as follows:

latex_elements = {
The paper size ('letterpaper' or 'a4paper').
#
'papersize': 'a4paper',

The font size ('10pt', '11pt' or '12pt').
#
'pointsize': '10pt',

Additional stuff for the LaTeX preamble.
#
'preamble': '',

Latex figure (float) alignment
#
'figure_align': 'tbp',

}

An interesting entry is also 'preamble' where all information can be specified which would nor-
mally go in the preamble of a LaTeX document, i.e. between the documentclass statement and the
\begin{document} line. Note, however, that the use of backslashes common in LaTeX documents might
require to specify the string as raw string by placing an r in front of it. A number of parameters specified
by the Sphinx style file can be modified in an entry with key 'sphinxsetup'. If the outline of the box
enclosing code should be removed and a background color different from white should be used, one might
specify:

'sphinxsetup': '''verbatimwithframe=false,
VerbatimColor={named}{AliceBlue},

'''

This definition is used for the present document. Details about which parameters can be changed in
this way and about other entries which can be added to the dictionary latex_elements can be found in
the section LaTeX customization of the Sphinx documentation. Finally, it may be useful to know that
in the list latex_documents several properties of the document are specified like the title and author
appearing on the cover page of the documentation.

6.2.3 Autogeneration of a documentation

With Sphinx it is possible to autogenerate documentation from docstrings. Before discussing how doc-
strings can be formatted for use by Sphinx, we make a few general remarks on docstrings. Recommen-
dations about how a docstring should look like are given in PEP 257.8 We here focus on the keypoints

8 PEP is short for Python Enhancement Proposal.

6.2. Sphinx documentation generator 105

https://www.sphinx-doc.org/en/stable/theming.html
https://www.sphinx-doc.org/en/stable/theming.html
https://sphinx-themes.org/
https://www.sphinx-doc.org/en/master/latex.html
https://www.python.org/dev/peps/pep-0257

Tools for Scientific Computing, Release 0.3

pertinent to docstrings of methods and functions. The first line of the docstring should be a phrase
ending in a period. It should be written as a command like “do something” instead of a description like
“does something”. This phrase should not exceed one line and it should be separated from the rest of the
docstring by one empty line. Then, in particular the arguments of the function or method and the return
value(s) should be explained. Or course, further information deemed useful can be given in addition.

In order to demonstrate the autogeneration of documentation from docstrings, we take as an example
the last script for the quantum carpet discussed in Section 5. We have partially supplied the code with
docstrings which now looks as follows:

from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

class InfiniteWell:
"""Quantum carpet for infinitely deep potential well.

This class allows to determine the time evolution of an
initial state in an infinitely deep potential well.

:param func psi0: initial wave function
:param float width: width of the potential well
:param int nbase: number of basis states
:param int nint: number of intervals used in the integration routine
"""

def __init__(self, psi0, width, nbase, nint):
self.width = width
self.nbase = nbase
self.nint = nint
self.coeffs = trapezoidal(lambda x: psi0(x)*self.eigenfunction(x),

-0.5*self.width, 0.5*self.width, self.nint)

def eigenfunction(self, x):
"""Determine set of eigenfunction values at position ``x``.

The basis set is limited by the number of eigenstates given by
``self.nbase``.

:param x: position at which the eigenfunctions are to be determined
:type x: float or numpy.ndarray
:return: array of eigenfunction values
:rtype: numpy.ndarray
:raises AssertionError: if the dimension of ``x`` does not equal 1
"""
assert x.ndim == 1
normalization = sqrt(2/self.width)
args = (np.arange(self.nbase)[:, np.newaxis]+1)*np.pi*x/self.width
result = np.empty((self.nbase, x.size))
result[0::2, :] = normalization*np.cos(args[0::2])
result[1::2, :] = normalization*np.sin(args[1::2])
return result

def psi(self, x, t):
coeffs = self.coeffs[:, np.newaxis]
eigenvals = np.arange(self.nbase)[:, np.newaxis]
tvals = t[:, np.newaxis, np.newaxis]

(continues on next page)

106 Chapter 6. Documentation of code

Tools for Scientific Computing, Release 0.3

(continued from previous page)

psit = np.sum(coeffs * self.eigenfunction(x)
* np.exp(-1j*(eigenvals+1)**2*tvals), axis= -2)

return psit

def trapezoidal(func, a, b, nint):
delta = (b-a)/nint
x = np.linspace(a, b, nint+1)
integrand = func(x)
integrand[..., 0] = 0.5*integrand[..., 0]
integrand[..., -1] = 0.5*integrand[..., -1]
return delta*np.sum(integrand, axis=-1)

def psi0(x):
"""Determine Gaussian wave function.

:param float x: position at which the wave function is determined
:return: value of wave function at position ``x``
:rtype: float
"""
sigma = 0.005
return np.exp(-x**2/(2*sigma))/(np.pi*sigma)**0.25

if __name__ == '__main__':
w = InfiniteWell(psi0=psi0, width=2, nbase=100, nint=1000)
x = np.linspace(-0.5*w.width, 0.5*w.width, 500)
t = np.linspace(0, np.pi/4, 1000)
z = np.abs(w.psi(x, t))**2
z = z/np.max(z)
plt.rc('text', usetex=True)
plt.imshow(z.T, cmap=cm.hot)
plt.xlabel('t', fontsize=20)
plt.ylabel('x', fontsize=20)
plt.show()

In addition to the docstrings, this code makes sure that the last part is not executed when this script
is imported, because in order to access the docstrings, Sphinx will import the script. Execution of the
last part in our case will simply cost time but in general can have more serious side effects. Note that
the script can only be imported, if it is in the search path defined in the Sphinx configuration file. This
usually requires to uncomment the three lines

import os
import sys
sys.path.insert(0, os.path.abspath('.'))

and to adjust the argument of os.path.abspath according to the place where the script to be imported
can be found.

The docstrings are written in reStructuredText and admittedly are not easy to read. We will discuss a
solution to this problem shortly. For the moment, however, we will keep this form of the docstrings.

Now let us add the following code in one of our reStructuredText files which are part of the documenta-
tion:

.. automodule:: carpet
:members:
:undoc-members:

This code will only function correctly, if the autodoc extension is loaded, i.e. the list extensions in

6.2. Sphinx documentation generator 107

Tools for Scientific Computing, Release 0.3

the Sphinx configuration file contains the entry 'sphinx.ext.autodoc'. The argument carpet of the
automodule directive implies that the file carpet.py will be imported. The autogenerated documenta-
tion will list all documented as well as all undocumented members. The generated output will look as
follows:

class carpet.InfiniteWell(psi0, width, nbase, nint)

Quantum carpet for infinitely deep potential well.

This class allows to determine the time evolution of an initial state in an infinitely
deep potential well.

Parameters:

• psi0 (func) – initial wave function

• width (float) – width of the potential well

• nbase (int) – number of basis states

• nint (int) – number of intervals used in the integration routine

eigenfunction(x)

Determine set of eigenfunction values at position x.

The basis set is limited by the number of eigenstates given by self.nbase.

Parameters: x (float or numpy.ndarray) – position at which the eigen-
functions are to be determined

Returns: array of eigenfunction values

Return type: numpy.ndarray

Raises: AssertionError – if the dimension of x does not equal 1

psi(x, t)

carpet.psi0(x)

Determine Gaussian wave function.

Parameters: x (float) – position at which the wave function is determined

Returns: value of wave function at position x

Return type: float

carpet.trapezoidal(func, a, b, nint)

If the line containing :undoc-members: were left out in the automodule directive, the output would
contain only the documented class and methods. The listed methods could be restricted by giving the
appropriate names after :members:.

As already mentioned, the docstrings given above are not particularly easy to read. There are two
standards for docstrings which are handled by Sphinx, provided the extension napoleon is loaded. The
list extensions in the Sphinx configuration file then should contain the string 'sphinx.ext.napoleon'.
The supported standards for docstrings are the Google style docstring6 and NumPy style docstring7. We
will focus our discussion of these two standards to the method eigenfunction in the quantum carpet
script.

Applying the NumPy style to the method eigenfunction would result in

6 For a complete description see https://google.github.io/styleguide/pyguide.html#functions-and-methods and https:
//google.github.io/styleguide/pyguide.html#comments-in-classes.

7 For details see https://numpydoc.readthedocs.io/en/latest/format.html.

108 Chapter 6. Documentation of code

https://google.github.io/styleguide/pyguide.html#functions-and-methods
https://google.github.io/styleguide/pyguide.html#comments-in-classes
https://google.github.io/styleguide/pyguide.html#comments-in-classes
https://numpydoc.readthedocs.io/en/latest/format.html

Tools for Scientific Computing, Release 0.3

def eigenfunction(self, x):
"""Determine set of eigenfunction values at position `x`.

The basis set is limited by the number of eigenstates given by
``self.nbase``.

Parameters

x : float or numpy.ndarray

position at which the eigenfunctions are to be determined

Returns

numpy.ndarray

array of eigenfunction values

Raises

AssertionError

if the dimension of `x` does not equal 1

"""

where we did not repeat the code of the eigenfunction method. This docstring is nicely formatted in
sections. The possible sections are not restricted to the ones used in this example. A complete list
is given in the documentation of the napoleon preprocessor. The output obtained from this docstring
corresponds to the one given before, possibly with minor differences, so that we do not reproduce it here.

The Google style for docstrings resembles the NumPy style in the sectioning of the docstring even though
the details of the format differ. Our example would take the following form where we again leave out
the code of the method:

def eigenfunction(self, x):
"""Determine set of eigenfunction values at position `x`.

The basis set is limited by the number of eigenstates given by
``self.nbase``.

Args:
x (float or numpy.ndarray): Position at which the eigenfunctions

are to be determined.

Returns:
numpy.ndarray: Array of eigenfunction values.

Raises:
AssertionError: The dimension of `x` does not equal 1.

"""

These examples may serve to get the basic idea of how a documentation can be autogenerated from
docstrings. When working with the Sphinx documentation generator, questions are likely to come up
which have not been addressed in this chapter. A complete description can be found in the extensive
online documentation which should be consulted in the case of need.

6.2. Sphinx documentation generator 109

http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

Tools for Scientific Computing, Release 0.3

110 Chapter 6. Documentation of code

CHAPTER 7

Aspects of parallel computing

Today even consumer computers are equipped with multi-core processors which allow to run programs
truly in parallel. In numerical calculations, algorithms can often be parallelized so that the execution
time can be reduced by running the code on several compute cores. A program could thus profit from the
use of several cores within a single processor or from a potentially large number of cores in a computer
cluster accommodating a large number of processors.

Parallel execution of a program can result in problems if the individual computations are not well syn-
chronized among each other. The final result might then depend on how fast each of the computations
is carried out. Such racing conditions may lead to problems which are sometimes difficult to debug.
CPython, the most popular implementation of Python, therefore implements the so-called Global Inter-
preter Lock (GIL) which prevents actual parallel execution within a single Python process. This aspect
will be discussed further in the following section.

Despite the GIL, parallel processing is possible in Python if several processes is started. In Section 7.2,
we will demonstrate how this can be done by considering the calculation of the Mandelbrot set as an
example. This problem is particularly simple because it allows to decompose the full problem into smaller
problems without requiring any exchange of data between them. This kind of problems is referred to as
embarrassingly parallel. Here, we will restrict ourselves to this type of problems. The communication
between processes running in parallel raises a number of difficulties which are beyond the scope of the
present lecture notes. Readers interested more deeply in this topic might want to read more on the
message passing interface (MPI) and take a look at the mpi4py package.

In the last section of this chapter, we will address the possibilities offered by Numba, a so-called Just in
Time Compiler (JIT Compiler). The use of Numba can lead to significant improvements of the run time
of a program. Furthermore, Numba can support the parallel handling of Python code.

7.1 Threads, processes and the GIL

Modern operating systems can seemingly run several tasks in parallel even on a simple compute core. In
practice, this is achieved by in turn allotting compute time to different tasks so that a single task usually
cannot block other tasks from execution over a longer period of time.

It is important to distinguish two different kinds of tasks: processes and threads. Processes have at their
disposal a reserved range of memory and their own access to other system resources. As a consequence,
starting a new process comes with a certain overhead in time. A single process will start first one and
subsequently possibly further threads in order to handle different tasks. Threads differ from processes

111

Tools for Scientific Computing, Release 0.3

Figure 7.1: In this example, the graph of the system load shows that during the solution of the eigenvalue
problem for a large matrix by means of NumPy compiled with the Intel® MKL four cores are used at
the same time.

by working on the same range of memory and by accessing the same system resources. Starting a thread
is thus less demanding than starting a process.

Since threads share a common range of memory, they can access the same data and easily exchange data
among each other. Communication between different threads thus leads to very little overhead. However,
the access to common data is not without risks. If one does not take care that reading and writing data
by different threads is done in the intended order, it may happen that a thread does not obtain the data
it needs. As the occurrence of such mistakes depends on details of which thread executes which tasks at
a given time, such problems are not easily reproducible and sometimes quite difficult to identify. There
exist techniques to cope with the difficulties involved in the communication between different threads,
making multithreading, i.e. the parallel treatment in several threads, possible. We will, however, not
cover these techniques in the present lecture notes.

As already mentioned in the introduction, the most popular implementation of Python, CPython im-
plemented in C, makes use of the GIL, the global interpreter lock. The GIL prevents a single Python
process to execute more than one thread in parallel. While it is possible to make use of multithreading
in Python1, the GIL will ensure that individual threads will never run in parallel but in turn are allotted
their slots of compute time. In this way, only an illusion of parallel processing is created.

If the time of execution of a Python script is limited by the compute time, multithreading will not result
an in improvement. To the contrary, the overhead arising from the necessity to change between different
threads will lead to a slow-down of the script. However, there exist scripts which are I/O-bound. An
example could be a script processing data which need to be downloaded from the internet. While a
thread is waiting for new data to arrive, another thread might use the time to process data already
available. For I/O-bounded scripts, multithreading thus may be a good strategy even in Python.

However, numerical programs are usually not I/O-bound but limited by the compute time. Therefore,
we will not consider multithreading any further but rather concentrate on multiprocessing, i.e. parallel
treatment by means of several Python processes. It is worth mentioning though that multithreading may
play a role even in numerical applications written in Python when numerical libraries are used. Such
libraries are often based on C code which is not subject to the restrictions imposed by the GIL. Linear
algebra routines provided by an appropriately compiled version of NumPy may serve as an example.
This includes the NumPy library available through the Anaconda distribution which is compiled with
the Intel® Math Kernel Library (MKL). Figure 7.1 demonstrates an example where four cores are used
when determining the eigenvectors and eigenvalues of a large matrix. Another option to circumvent the
GIL is offered by Cython2 which allows to generate C extensions from Python code. Those parts of the
code not accessing Python objects can then be executed in a nogil context outside the control of the
GIL.

7.2 Parallel computing in Python

We will illustrate the use of parallel processes in Python by considering a specific example, namely the
calculation of the Mandelbrot set. Mathematically, the Mandelbrot set is defined as the set of complex

1 When referring to Python, we always mean CPython. An example of an implementation of Python without a GIL is
Jython written in Java.

2 Cython should not be confused with CPython, the C implementation of Python. More information on Cython can be
found at https://cython.org/.

112 Chapter 7. Aspects of parallel computing

https://cython.org/

Tools for Scientific Computing, Release 0.3

numbers 𝑐 for which the series generated by the iteration

𝑧𝑛+1 = 𝑧2𝑛 + 𝑐

with the initial value 𝑧0 = 0 remains bounded. It is known that the series is not bound once |𝑧| > 2
has been reached so that it suffices to perform the iteration until this threshold has been reached.
The iterations for different values of 𝑐 can be performed completely independently of each other so
that it is straightforward to distribute different values of 𝑐 to different processes. The problem is thus
embarrassingly parallel. Once all individual calculations are finished, it suffices to collect all data and to
represent them graphically.

We start out with the following initial version of a Python script to determine the Mandelbrot set.

import time
import numpy as np
import matplotlib.pyplot as plt

def mandelbrot_iteration(cx, cy, nitermax):
x = 0
y = 0
for n in range(nitermax):

x2 = x*x
y2 = y*y
if x2+y2 > 4:

return n
x, y = x2-y2+cx, 2*x*y+cy

return nitermax

def mandelbrot(xmin, xmax, ymin, ymax, npts, nitermax):
data = np.empty(shape=(npts, npts), dtype=np.int)
dx = (xmax-xmin)/(npts-1)
dy = (ymax-ymin)/(npts-1)
for nx in range(npts):

x = xmin+nx*dx
for ny in range(npts):

y = ymin+ny*dy
data[ny, nx] = mandelbrot_iteration(x, y, nitermax)

return data

def plot(data):
plt.imshow(data, extent=(xmin, xmax, ymin, ymax),

cmap='jet', origin='bottom', interpolation='none')
plt.show()

nitermax = 2000
npts = 1024
xmin = -2
xmax = 1
ymin = -1.5
ymax = 1.5
start = time.time()
data = mandelbrot(xmin, xmax, ymin, ymax, npts, nitermax)
ende = time.time()
print(ende-start)
plot(data)

Here, the iteration prescription is carried out in the function mandelbrot_iteration up to maximum
number of iterations given by nitermax. We handle real and imaginary parts separately instead of
performing the iteration with complex numbers. It turns out that our choice is slightly faster, but more

7.2. Parallel computing in Python 113

Tools for Scientific Computing, Release 0.3

−0.7488 −0.7486 −0.7484 −0.7482
−0.0634

−0.0633

−0.0632

−0.0631

−0.063

−0.0629

−0.0628

Re(c)

m
(c
)

Figure 7.2: Detail of the Mandelbrot set where the color represents the number of iterations needed until
the threshold of 2 for the absolute value of 𝑧 is reached.

importantly, this approach can also be employed for the NumPy version which we are going to discuss
next.

The purpose of the function mandelbrot is to walk through a grid of complex values 𝑐 and to collect the
results in the array data. For simple testing purposes, it is useful to graphically represent the results
by means of the function plot. We also have added code to determine the time spent in the functions
mandelbrot and mandelbrot_iteration. On an i7-6700HQ CPU, we measured and execution time of
81.1 seconds.

Before parallelizing code, it often makes sense to consider other possible improvements. In our case, it
is natural to take a look at a version making use of NumPy. Here, we list only the code replacing the
functions mandelbrot and mandelbrot_iteration in our first version.

def mandelbrot(xmin, xmax, ymin, ymax, npts, nitermax):
cy, cx = np.mgrid[ymin:ymax:npts*1j, xmin:xmax:npts*1j]
x = np.zeros_like(cx)
y = np.zeros_like(cx)
data = np.zeros(cx.shape, dtype=np.int)
for n in range(nitermax):

x2 = x*x
y2 = y*y
notdone = x2+y2 < 4
data[notdone] = n
x[notdone], y[notdone] = (x2[notdone]-y2[notdone]+cx[notdone],

2*x[notdone]*y[notdone]+cy[notdone])
return data

For an appealing graphical representation of the Mandelbrot set, we need to keep track of the number of
iterations required to reach the threshold for the absolute value of 𝑧. We achieve this by fancy indexing
with the array notdone. An entry of True means that the threshold has not been reached yet. An
example of the graphical output generated by the NumPy version of the program is shown in Figure 7.2.

For the NumPy version, we have measured an execution time of 22.8s, i.e. almost a factor of 3.6 faster
than our initial version.

Now, we will further accelerate the computation by splitting the task into several parts which will be
attributed to a number of processes for processing. For this purpose, we will make use of the module
concurrent.futures available from the Python standard library. The name concurrent indicates that
several tasks are carried out at the same time while futures refers to objects which will provide the
desired results at a later time.

For a parallel computation of the Mandelbrot set, we decompose the area in the complex plane covering
the relevant values of 𝑐 into tiles, which will be treated separately by the different processes. Figure 7.3

114 Chapter 7. Aspects of parallel computing

Tools for Scientific Computing, Release 0.3

−1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

Re(c)

m
(c
)

Figure 7.3: The four different colors indicate which one out of four processes has carried out the com-
putation for the corresponding tile. Note that the number of tiles per process does not necessarily equal
16.

displays a distribution of 64 tiles on four processes indicated by different colors. Since the processing
time for the tiles differs, there is one process which has treated only 15 tiles while another process has
treated 17.

The following code demonstrates how the NumPy based version can be adapted to a parallel treatment.
Again we concentrate on the Mandelbrot specific parts.

1 from concurrent import futures
2 from itertools import product
3 from functools import partial
4

5 import numpy as np
6

7 def mandelbrot_tile(nitermax, nx, ny, cx, cy):
8 x = np.zeros_like(cx)
9 y = np.zeros_like(cx)

10 data = np.zeros(cx.shape, dtype=np.int)
11 for n in range(nitermax):
12 x2 = x*x
13 y2 = y*y
14 notdone = x2+y2 < 4
15 data[notdone] = n
16 x[notdone], y[notdone] = (x2[notdone]-y2[notdone]+cx[notdone],
17 2*x[notdone]*y[notdone]+cy[notdone])
18 return (nx, ny, data)
19

20 def mandelbrot(xmin, xmax, ymin, ymax, npts, nitermax, ndiv, max_workers=4):
21 cy, cx = np.mgrid[ymin:ymax:npts*1j, xmin:xmax:npts*1j]
22 nlen = npts//ndiv
23 paramlist = [(nx, ny,
24 cx[nx*nlen:(nx+1)*nlen, ny*nlen:(ny+1)*nlen],
25 cy[nx*nlen:(nx+1)*nlen, ny*nlen:(ny+1)*nlen])
26 for nx, ny in product(range(ndiv), repeat=2)]
27 with futures.ProcessPoolExecutor(max_workers=max_workers) as executors:
28 wait_for = [executors.submit(partial(mandelbrot_tile, nitermax),
29 nx, ny, cx, cy)
30 for (nx, ny, cx, cy) in paramlist]

(continues on next page)

7.2. Parallel computing in Python 115

Tools for Scientific Computing, Release 0.3

n = 4

n = 16

n = 64

n = 256

n = 1024

Figure 7.4: Distribution of tasks to determine the Mandelbrot set over four processes as a function of
the number of tiles.

(continued from previous page)

31 results = [f.result() for f in futures.as_completed(wait_for)]
32 data = np.zeros(cx.shape, dtype=np.int)
33 for nx, ny, result in results:
34 data[nx*nlen:(nx+1)*nlen, ny*nlen:(ny+1)*nlen] = result
35 return data

The main changes have occurred in the function mandelbrot. In addition to the arguments present
already in earlier versions, two arguments have been added: ndiv and max_workers. ndiv defines the
number of divisions in each dimension of the complex plane. In the example of Figure 7.3, ndiv was set
to 8, resulting in 64 tiles. The argument max_workers defines the maximal number of processes which
will run under the control of our script. The choice for this argument will depend on the number of cores
available to the script.

In lines 23-26, we define a list of parameters characterizing the individual tiles. Each entry contains the
coordinates (nx, ny) of the tile which will later be needed to collect all data. In addition, the section of
the real and imaginary parts of 𝑐 corresponding to the tile become part of the parameter list. The double
loop required in the list comprehension is simplified by making use of the product method available from
the itertools module of the Python standard library imported in line 2.

The main part responsible for the distribution of tasks to the different workers can be found in lines
27-31. This code runs under the control of a context manager which allocates a pool of max_workers
executors. The method ProcessPoolExecutor is available from the concurrent.futures module.

In lines 28-30 a list of tasks is submitted to the executors. Each submission consists of a function, in our
case mandelbrot_tile, and the corresponding parameters. The function mandelbrot_tile possesses
one argument nitermax which is the same for all tasks and the parameters listed in paramlist which
differ from task to task. Therefore, we construct a partial function object which fixes nitermax and
requires only nx, ny, cx, and cy as arguments. The partial method is imported from the functools
module in line 3.

In line 31, the results are collected in a list comprehension. Once all tasks have been completed, the list
results contains entries consisting of the coordinates (nx, ny) of the tile and the corresponding data
as defined in line 18. In lines 33-34, the data are brought into order to fill the final array data which
subsequently can be used to produce graphical output.

It is interesting to study how the total time to determine the Mandelbrot set depends on the number
of tiles. The corresponding data are shown in Figure 7.4 for four parallel processes. In the case of four
tiles, we see that the different tiles require different times so that we have to wait for the slowest process.
For four tiles, where the memory requirement per process is relatively large, we also can see a significant
time needed to start a process. Increasing the number of tiles leads to a reduction of the execution time.
However, even for 16 tiles, one has to wait for the last process. The optimum for four processes is reached
for 64 tiles. Increasing the number of tiles further will lead to an increasing overhead when switching
from one task to the next.

Figure 7.5 depicts the acceleration for four processes as a function of the number of divisions per axis.
The points connected by the dotted line are obtained by dividing the time required by a single process

116 Chapter 7. Aspects of parallel computing

Tools for Scientific Computing, Release 0.3

1 2 4 8 16 32 64 128
0

2

4

6

number of divisions per axis

ac
ce
le
ra
ti
on

Figure 7.5: Acceleration by parallelization in the computation of the Mandelbrot set with four processes
as a function of the number of divisions per axis. The points connected by the dotted line represent the
acceleration of the parallelized version with respect to the unparallelized version without subdivision.
The points connected by the full line represent the acceleration of the parallelized version with respect
to the unparallelized version for the same number of divisions.

without subdividing the task through the time required by four processes with the subdivision indicated
in the figure. In agreement with Figure 7.4 we find the largest acceleration for 8 divisions per axis, i.e.
64 tiles. Interestingly, the acceleration can reach values slightly exceeding a factor six. This effect may
result from a more effective use of caches for smaller problems as compared to the full problem with
𝑛 = 1. The effect of caches can be excluded by taking ratio of the execution times for one and four
processes for the same number of tiles. As Figure 7.5 demonstrates, a factor of nearly four is reached
beyond 𝑛 = 8.

7.3 Numba

In the previous section we have seen how a program can be accelerated by means of NumPy and par-
allelization. For our example of the Mandelbrot set, this could be achieved in a rather straightforward
manner because the use of arrays came quite naturally and parallelization did not require any commu-
nication between the different tasks. Besides the use of NumPy and parallelization of the code, there
exist other options to accelerate Python scripts, some of them being very actively developed at present.
Therefore, we do not attempt a complete description but rather highlight some ways to accelerate a
Python script.

We will specifically discuss Numba3 because it is designed to work with NumPy and also supports
parallelization. Numba makes use of just in time (JIT) compilation. While Python scripts usually are
interpreted, Numba will produce executable code for a function when it is called first. The compilation
step implies a certain investment of time but the function can be executed faster during subsequent calls.
Python allows to call functions with different signatures, i.e. the data types of the arguments are not
fixed. Compiled code, on the other hand, depends on the signature. Therefore, additional compilation
steps may become necessary.

We will demonstrate just in time compilation and the effect of different signatures by approximately
determining the Riemann zeta function

𝜁(𝑠) =

∞∑︁
𝑛=1

1

𝑛𝑠
.

The following implementation of the code is not particularly well suited to efficiently determine the zeta
function but this is not relevant for our discussion. Without using Numba, a direct implementation of
the sum looks as follows:

3 Up-to-date information on Numba can be found at https://numba.pydata.org/.

7.3. Numba 117

https://numba.pydata.org/

Tools for Scientific Computing, Release 0.3

def zeta(x, nmax):
zetasum = 0
for n in range(1, nmax+1):

zetasum = zetasum+1/(n**x)
return zetasum

print(zeta(2, 100000000))

We can now simply make use of Numba by importing it in line 1 and adding a decorator numba.jit to
the function zeta:

1 import numba
2

3 @numba.jit
4 def zeta(x, nmax):
5 zetasum = 0
6 for n in range(1, nmax+1):
7 zetasum = zetasum+1/(n**x)
8 return zetasum
9

10 print(zeta(2, 100000000))

Running the two pieces of code, we find an execution time for the first version of 34.1 seconds while
the second version takes only 0.85 seconds. After running the code, we can print out the signatures for
which the function zeta was compiled by Numba:

print(zeta.signatures)

Because we called the function with two integers as arguments, we obtain not unexpectedly:

[(int64, int64)]

Like in NumPy and in contrast to Python, integers cannot become arbitrarily large. In our example,
they have a length of eight bytes. Accordingly, one has to beware of overflows. For example, if we set x
to 3, we will encounter a division by zero.

To demonstrate that Numba compiles the function for each signature anew, we call zeta with an integer,
a float, and a complex number:

1 import time
2 import numba
3

4 @numba.jit
5 def zeta(x, nmax):
6 zetasum = 0
7 for n in range(1, nmax+1):
8 zetasum = zetasum+1/(n**x)
9 return zetasum

10

11 nmax = 100000000
12 for x in (2, 2.5, 2+1j):
13 start = time.time()
14 print(f'𝜁({x}) = {zeta(x, nmax)}')
15 print(f'execution time: {time.time()-start:5.2f}s\n')
16

17 print(zeta.signatures)

The resulting output demonstrates that the execution time depends on the type of variable x` and that
Numba has indeed compiled the function for three different signatures:

118 Chapter 7. Aspects of parallel computing

Tools for Scientific Computing, Release 0.3

𝜁(2) = 1.644934057834575
execution time: 0.59s

𝜁(2.5) = 1.341487257103954
execution time: 5.52s

𝜁((2+1j)) = (1.1503556987382961-0.43753086346605924j)
execution time: 13.41s

[(int64, int64), (float64, int64), (complex128, int64)]

Numba also allows us to transform functions into universal functions or ufuncs which we have introduced
in Section 4.2.6. Besides scalar arguments, universal functions are capable of handling array arguments.
This is achieved already by using the decorator jit. By means of the decorator vectorize, the evaluation
of the function with an array argument can even by performed in several threads in parallel.

In the following code example, we specify the signature for which the function zeta should be compiled
as argument of the decorator vectorize. The argument x is a float64 and can also be a corresponding
array while n is an int64. The result is again a float64 and is listed as first argument before the pair
of parentheses enclosing the arguments’ data type. The argument target is given the value 'parallel'
so that in the case of an array argument the use of several threads is possible. If a parallel processing is
not desired, for example because for a small task starting a thread would cost too much time, one can
set target='cpu' instead. If an appropriate graphics processor is available, one might consider setting
target='cuda'.

1 import numpy as np
2 from numba import vectorize, float64, int64
3

4 @vectorize([float64(float64, int64)], target='parallel')
5 def zeta(x, nmax):
6 zetasum = 0.
7 for n in range(nmax):
8 zetasum = zetasum+1./((n+1)**x)
9 return zetasum

10

11 x = np.linspace(2, 10, 200, dtype=np.float64)
12 y = zeta(x, 10000000)

Figure 7.6 shows how the execution time for the Riemann zeta function can be reduced by using more
than one thread. The number of threads can be set by means of an environment variable. The following
command sets the number of threads to four:

$ export NUMBA_NUM_THREADS=4; python zeta.py

The timing in Figure 7.6 was done on an i7-6700HQ processor with four cores and hyperthreading which
allows to run eight threads in parallel. Up to four threads, the execution time decrease almost inversely
proportional to the number of threads. Increasing the number of threads beyond the number of cores
will further accelerate the execution but by a much smaller amount. The reason is that threads need to
wait for free resources more often.

With Numba, universal functions can be further generalized by means of the decorator guvectorize
so that not only scalars but also arrays can be employed in the inner loop. We will illustrate this by
applying Numba to our Mandelbrot example.

1 from numba import jit, guvectorize, complex128, int64
2 import matplotlib.pyplot as plt
3 import numpy as np
4

5 @jit
(continues on next page)

7.3. Numba 119

Tools for Scientific Computing, Release 0.3

1 2 3 4 5 6 7 8
1

2

3

4

5

number of threads

ac
ce
le
ra
ti
on

Figure 7.6: Acceleration of the computation of the Riemann zeta function as a function of the number
of threads on a CPU with four cores and hyperthreading.

(continued from previous page)

6 def mandelbrot_iteration(c, maxiter):
7 z = 0
8 for n in range(maxiter):
9 z = z**2+c

10 if z.real*z.real+z.imag*z.imag > 4:
11 return n
12 return maxiter
13

14 @guvectorize([(complex128[:], int64[:], int64[:])], '(n), () -> (n)',
15 target='parallel')
16 def mandelbrot(c, itermax, output):
17 nitermax = itermax[0]
18 for i in range(c.shape[0]):
19 output[i] = mandelbrot_iteration(c[i], nitermax)
20

21 def mandelbrot_set(xmin, xmax, ymin, ymax, npts, nitermax):
22 cy, cx = np.ogrid[ymin:ymax:npts*1j, xmin:xmax:npts*1j]
23 c = cx+cy*1j
24 return mandelbrot(c, nitermax)
25

26 def plot(data, xmin, xmax, ymin, ymax):
27 plt.imshow(data, extent=(xmin, xmax, ymin, ymax),
28 cmap='jet', origin='bottom', interpolation='none')
29 plt.show()
30

31 nitermax = 2000
32 npts = 1024
33 xmin = -2
34 xmax = 1
35 ymin = -1.5
36 ymax = 1.5
37 data = mandelbrot_set(xmin, xmax, ymin, ymax, npts, nitermax)

Let us take a closer look at the function mandelbrot decorated by guvectorize which has a special
set of arguments. The function mandelbrot possesses three arguments. However, only two of them are
intended as input: c and itermax. The third argument output will contain the data returned by the
function. This can be inferred from the second argument of the decorator, the so-called layout. The
present layout indicates that the returned array output has the same shape as the input array c. Because

120 Chapter 7. Aspects of parallel computing

Tools for Scientific Computing, Release 0.3

c is a two-dimensional array, the argument c[i] of the function mandelbrot_iteration is again an array
which can be handled by several threads. While maxiter in the function mandelbrot_iteration has to
be a scalar, the array itermax is converted in line 17 into a scalar.

On the same processor on which we timed earlier version of the Mandelbrot program and which through
hyperthreads supports up to eight threads, we find an execution time of 0.56 seconds. Compared to our
fastest parallelized program, we thus observe an acceleration by more than a factor of six and compared
to our very first version the present version is faster by a factor of almost 150.

7.3. Numba 121

Tools for Scientific Computing, Release 0.3

122 Chapter 7. Aspects of parallel computing

CHAPTER 8

Appendix

8.1 Decorators

In this appendix, we give a short introduction to decorators so that we have an idea of what they are
about when making use of them. Decorators are a way to modify the behavior of functions, methods,
or classes. We will restrict our discussion to functions. The effect of a decorator is then to replace the
function by a modified version of the original function. Some examples will demonstrate how this works.

For the first example we assume that our script defines a couple of functions which we would like to
register. To keep things simple, registering a function shall simply mean that an appropriate message is
printed.

1 def register(func):
2 print(f'{func.__name__} registered')
3 return func
4

5 @register
6 def myfunc():
7 print('executing myfunc')
8

9 @register
10 def myotherfunc():
11 print('executing myotherfunc')
12

13 print('-'*40)
14 myfunc()
15 myotherfunc()

In lines 1-3 we define a decorator called register which is then applied in lines 5 and 9 to two functions
myfunc and myotherfunc. Running the script produces the following output:

myfunc registered
myotherfunc registered
--
executing myfunc
executing myotherfunc

123

Tools for Scientific Computing, Release 0.3

What has happened? Before running the code in lines 13-15, Python has defined the functions in the
lines 1-11. When getting to myfunc, the decorator register will come into action. Its argument func
will be the function myfunc, i.e. the argument of a decorator is implicitly given by the function following
the decorator statement. Then, register is executed, first printing a message which contains the name
of the decorated function. Then it returns the function myfunc unmodified. The effect of the decorator
thus is simply to print a message that the function myfunc has been registered. As the output reproduced
above shows, this is only done once, namely when Python processes the function code. Later, the function
is executed which was returned by the decorator. In our case, this is simply the original function.

The decorator can also be used to modify the function so that a desired effect occurs each time the
function is executed. In the following example, we define a somewhat more complex decorator named
logging which prints a message when the function is starting execution and another message indicating
the time of execution just before the function finishes execution. The interest of using the logging
decorator is to analyse how the execution of a recursive function works.

1 import time
2 from itertools import chain
3

4 def logging(func):
5 def func_with_log(*args, **kwargs):
6 arguments = ', '.join(map(repr, chain(args, kwargs.items())))
7 print(f'calling {func.__name__}({arguments})')
8 start = time.time()
9 result = func(*args, **kwargs)

10 elapsed = time.time()-start
11 print(f'got {func.__name__}({arguments}) = {result} '
12 f'in {elapsed*1000:5.3f} ms')
13 return result
14 return func_with_log
15

16 @logging
17 def factorial(n):
18 if n == 1:
19 return 1
20 else:
21 return n*factorial(n-1)
22

23 factorial(5)

The main difference to our first example consists in the fact that the decorator in lines 5-14 defines
a new function. As a consequence, the modifications apply whenever the decorated function is run.
Then new function func_with_log is written in a rather general way to allow its use for arbitrary
functions. In particular, the decorated function can take an arbitrary number of arguments including
keyword arguments. Whenever the decorated function is executed, it will print a message including
the arguments with which the function was called. In addition, the starting time is stored. Then, the
original function, in our case factorial, is run and when it returns, the elapsed time is determined.
Before quitting, the result together with the elapsed time are printed.

Running the script, we obtain the following output:

calling factorial(5)
calling factorial(4)
calling factorial(3)
calling factorial(2)
calling factorial(1)
got factorial(1) = 1 in 0.001 ms
got factorial(2) = 2 in 0.042 ms
got factorial(3) = 6 in 0.069 ms
got factorial(4) = 24 in 0.094 ms

(continues on next page)

124 Chapter 8. Appendix

Tools for Scientific Computing, Release 0.3

(continued from previous page)

got factorial(5) = 120 in 0.127 ms

It nicely demonstrates how the function factorial is called recursively until the recursion comes to an
end when the argument equals 1.

A decorator could even go as far as not running the decorated function at all and possibly returning
a result nevertheless. A situation where such a decorator could make sense is during testing. Suppose
that we want to test a program which relies on obtaining data from a measuring device. If we are not
interested in testing the connection to the device but only how received data are handled, an appropriate
decorator would allows us to test the program even without connection to the measuring device as long
as the decorator provides us with appropriate data.

8.1. Decorators 125

Tools for Scientific Computing, Release 0.3

126 Chapter 8. Appendix

Index

P
Python Enhancement Proposals

PEP 257, 105

127

	Introduction
	Version Control with Git
	Why version control?
	Centralized and distributed version control systems
	Getting help
	Setting up a local repository
	Basic workflow
	Working with branches
	Collaborative code development with GitLab
	Sundry topics
	Stashing
	Tagging
	Detached head state
	Manipulating history

	Testing of code
	Why testing?
	Doctests
	Testing with pytest

	Scientific computing with NumPy and SciPy
	Python scientific ecosystem
	NumPy
	Python lists and matrices
	NumPy arrays
	Creating arrays
	Indexing arrays
	Broadcasting
	Universal functions
	Linear algebra

	SciPy

	Run-time analysis
	General remarks
	Some pitfalls in run-time analysis
	The timeit module
	The cProfile module
	Line oriented run-time analysis

	Documentation of code
	Markup with reStructuredText
	Sphinx documentation generator
	Setting up a Sphinx project
	Sphinx configuration
	Autogeneration of a documentation

	Aspects of parallel computing
	Threads, processes and the GIL
	Parallel computing in Python
	Numba

	Appendix
	Decorators

	Index

